Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic moment of the proton measured with unprecedented precision

06.06.2014

Physicists succeeded in the first direct high-precision measurement of a fundamental property of the proton / Results will contribute to a better understanding of the matter/antimatter asymmetry

One of the biggest riddles in physics is the apparent imbalance between matter and antimatter in our universe. To date, there is no explanation as to why matter and antimatter failed to completely annihilate one another immediately after the big bang and how the surplus matter was created that went on to form the universe as we know it. Experiments conducted at Johannes Gutenberg University Mainz (JGU) have contributed towards a resolution of this problem.


Double Penning trap used to measure the magnetic moment of the proton. The double Penning trap is made of gold-plated cylindrical trap electrodes; the individual trap electrodes are isolated from one another using sapphire rings. During measurements the trap is in an ultra-high vacuum. To the right of the image is the outer housing of a detection instrument which allows for the observation of single protons. The entire structure is about 20 centimeters long.

photo: Andreas Mooser, JGU


The oscillating proton (red) generates a tiny current which is recorded using highly sensitive electronic detectors. The red arrow represents the magnetic moment of the proton; the green lines indicate the magnetic field in the trap.

Ill.: Georg Schneider, JGU

For the first time a direct and high-precision measurement of the magnetic moment of the proton has been conducted successfully. The magnetic moment is one of the fundamental properties of protons, which combine with neutrons to form the nucleus of atoms.

In principal, the method can also be used to measure the magnetic moment of an antiproton with a similarly high precision, making it possible to investigate matter/antimatter asymmetry. Related experiments are now being set up at the CERN research center in Geneva, Switzerland.

Years of preparation were necessary before the measurements were possible and the results obtained have far exceeded those of all previous attempts. In addition to Mainz University, the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, the Max Planck Institute of Nuclear Physics in Heidelberg, and the Japanese RIKEN research facility all took part in the experiment. 

Using a double Penning trap, the researchers were able to determine the relevant parameter, the so-called 'g-factor,' with a precision of 3.3 x 10ˆ9. The result is 760 times more precise than all the results documented independently at Mainz University and Harvard University in 2012, and three-times more precise than the result obtained by an indirect measurement in 1972.

"Protons are like tiny rod magnets. They have a magnetic moment 24 magnitudes – equal to one millionth of a billionth of a billionth – weaker than a typical compass needle. This is the first time we have been able to measure anything on this scale," said Andreas Mooser, primary author of the study and a member of Professor Jochen Walz's research team at Mainz University.

The key to success proved to be the use of a double Penning trap, i.e., an electromagnetic particle trap, to isolate and evaluate a single free proton. An analysis trap serves to detect spin-quantum jumps of the proton, while in a precision trap precise frequency measurements are conducted.

It has proved possible in the past to use Penning traps to directly measure the magnetic moment of individual particles such as electrons and their antiparticle counterparts, positrons. But adapting this approach for use with protons is an enormous challenge as the magnetic moment of a proton is 660 times smaller than that of an electron.

The apparatus for the experiment needed to be far more sensitive. The collaborating partners were able to develop such a highly sensitive double Penning trap so that they could undertake the long-planned measurements.

Apart from the direct measurement performed in Mainz, the previous most precise measurements were obtained by means of an indirect method in 1972, where the hyper-fine structure of atomic hydrogen was measured and subsequently theoretical corrections were applied.

The principle of a direct measurement in a double Penning trap can also be used for the antiproton. "We can then compare the two results and test these against the fundamental predictions of the standard model," explained Stefan Ulmer, coordinator of the BASE joint project, which is currently setting up a corresponding experiment at CERN in Geneva.

Using the double Penning trap technique for the antiproton could enhance the precision of results obtained during the ATRAP project in 2013 by a factor of at least 1,000. Assuming that the measured values differ, this would represent an important step forward with regard to understanding the matter/antimatter asymmetry of our universe.

Publication:
Andreas Mooser et al.
Direct high-precision measurement of the magnetic moment of the proton
Nature, 29 May 2014
DOI: 10.1038/nature13388

Andreas Mooser et al.
Resolution of Single Spin Flips of a Single Proton
Physical Review Letters, 4 April 2013
DOI: 10.1103/PhysRevLett.110.140405

Further information:
Dr. Andreas Mooser
Quantum, Atomic and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-25953
fax +49 6131 39-23438
e-mail: mooser@uni-mainz.de
http://www.quantum.physik.uni-mainz.de/members__ag_walz__mooser.html.en

Weitere Informationen:

http://www.quantum.physik.uni-mainz.de/ag_walz__index.html.en ;
http://www.nature.com/nature/journal/v509/n7502/full/nature13388.html (Abstract) ;
http://www.uni-mainz.de/presse/14236_ENG_HTML.php (press release „Quantum leap: Magnetic properties of a single proton directly observed for the first time”) ;
http://base.web.cern.ch/

Ergänzung vom 06.06.2014

CORRECTION - 2nd paragraph, 3rd sentence:

Using a double Penning trap, the researchers were able to determine the relevant parameter, the so-called 'g-factor,' with a precision of 3.3 x 10ˆ9.

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: CERN Magnetic Physics asymmetry fundamental measure measurement measurements method protons trap

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>