Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Bits by Electric Fields

08.11.2016

Researchers now make use of local electric fields for writing and deleting individual nanoscale magnetic skyrmions

Physicists of the University of Hamburg in Germany have demonstrated for the first time the controlled writing and deleting of individual nanoscale magnetic knots – so called skyrmions – by applying local electric fields to an ultrathin film of iron as data storage medium.


Fig. 1: Controlled deleting (left) and writing (right) of individual nanoscale magnetic skyrmions by local electric fields. Between the individual images the tip of a scanning tunneling microscope was properly positioned and the local electric field was raised for a short time up to +3 V/nm (left) or -3V/nm (right). A single atomic vacancy in the ultrathin iron film (dark contrast) indicates the extremely small scale of the written and deleted skyrmions (bright contrast).


Fig. 2: Nanoscale skyrmions ligned up along linear tracks in ultrathin iron films being three atomic layers thick only. The magnetization direction rotates within atomic-scale distances within the skyrmions (bright contrast features), while it is constantly pointing perpendicular to the film plane in the ferromagnetic regions (dark blue regions). The image was recorded with a spin-polarized scanning tunneling microscope, which is the only technique that can reveal magnetization distributions with atomic-scale accuracy.

These tiny knots in the magnetization of ultrathin metallic films exhibit an exceptional stability and are highly promising candidates for future ultra-high density magnetic recording. So far, they could be manipulated by local spin-currents and magnetic fields only.

Now the research group at the University of Hamburg, headed by Roland Wiesendanger, report on the first electric-field controlled manipulation of nanoscale magnetic skyrmions in the journal Nature Nanotechnology (online issue of November 7, 2016). This work paves the way towards a new energy-efficient data storage technology in which electric fields can switch between two distinct magnetic states encoding the bits of information.

Magnetic skyrmions are highly complex three-dimensional spin textures, where the individual magnetic moments rotate in a unique sense by 360° from one side to the other. These objects have particle-like character and a non-trivial topology in contrast to the commonly known ferromagnetic state for which all magnetic moments are aligned in the same direction. Accordingly, skyrmions carry a topological charge „1“, whereas the ferromagnetic state has a topological charge of „0“.

In conventional magnetic data storage devices, the magnetic bits still consist of a rather large number of magnetic atoms with parallel aligned magnetic moments in two opposite directions, thereby encoding the „1“ and „0“ as bits of information. These two different magnetic states of conventional magnetic data storage systems can only be transformed into one another by magnetic fields or by spin currents, but not by electric fields because they are symmetry-related.

This is different in the case of skyrmions: they are topologically distinguishable from the ferromagnetic state and these two states can therefore be transformed into one another by local electric fields. The research group of Roland Wiesendanger could indeed show that tiny magnetic skyrmions can be switched by the local electric field present between the sharp tip of a scanning tunneling microscope and a sample consisting of a three atomic-layer thick iron film on an iridium substrate, and that the direction of the local electric field determines whether skyrmions can be created or deleted (see figure 1). Amazingly, the individual skyrmions in that three atomic layer thick iron film have a size of only 2.2 nm x 3.5 nm and can be aligned along linear tracks as shown in figure 2.

Conventional magnetic bits would never be stable in that size regime, whereas magnetic skyrmions pave the way towards ultra-dense data storage devices. Moreover, the demonstration of controlled electric-field induced writing and deleting of individual magnetic skyrmions can lead to an unprecedented energy-efficient way to store information since spin currents are no longer needed to switch between the two different bit states.

The research work leading to this fascinating discovery was partially supported by the Hamburgische Stiftung für Wissenschaften, Entwicklung und Kultur Helmut und Hannelore Greve in the framework of the “Hamburg Science Prize” for Roland Wiesendanger and his group.


Original publication:

Electric-field-driven switching of individual magnetic Skyrmions,
Pin-Jui Hsu, André Kubetzka, Aurore Finco, Niklas Romming, Kirsten von Bergmann, and Roland Wiesendanger,
Nature Nanotechnology (2016).
DOI: 10.1038/nnano.2016.234

Further Information:

Prof. Dr. Roland Wiesendanger
Sonderforschungsbereich 668
Fachbereich Physik
Universität Hamburg
Jungiusstr. 11a
20355 Hamburg
Tel: +49-40-42838-5244
E-Mail: wiesendanger@physnet.uni-hamburg.de

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Gamma-ray flashes from plasma filaments
18.04.2018 | Max-Planck-Institut für Kernphysik

nachricht How does a molecule vibrate when you “touch” it?
17.04.2018 | Universität Regensburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>