Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic atoms arranged in neat rows

03.08.2016

Physicists at Friedrich-Alexander Universität Erlangen-Nürnberg and the Vienna University of Technology have successfully created one-dimensional magnetic atom chains for the first time. Their break-through provides a model system for basic research in areas such as magnetic data storage, as well as in chemistry. Their results were recently published in the renowned journal Physical Review Letters.

Nanotechnology is revolutionising the way we live by making microelectronic systems even smaller, enabling new developments in diagnosis and treatment in medicine, and giving the surfaces of materials new self-cleaning properties – to name just a few examples.


One-dimensional atom chains: the oxygen molecules (red) separate the metal atoms (yellow&blue) from the iridium substrate (grey). The arrows show the different magnetisation of the different metals.

FAU/Pascal Ferstl

Nanostructures’ unique properties are partly due to the fact that the dimensionality of the materials is limited – such as by only allowing a crystal to grow in two directions or even just one direction instead of three. In essence, ‘one dimensional’ means arranging atoms in a chain.

‘However, an atom chain cannot exist in empty space but must be placed on a substrate,’ explains Prof. Dr. Alexander Schneider from FAU’s Chair of Solid-State Physics. ‘Doing this can cause the desired properties – magnetism in our case – to disappear again. Developing an understanding of these low-dimensional systems is a key research priority, as they are increasingly dominating the properties of magnetic data storage.’

Oxygen allows one-dimensional atom chains to form

Professor Schneider’s team collaborated with the working groups led by Prof. Dr. Klaus Heinz, also from the Chair of Solid-State Physics, and Prof. Dr. Josef Redinger from the Center for Computational Materials Science at the Vienna University of Technology. Together they were able to demonstrate that oxygen enables perfect single-atom chains to grow from manganese, iron, cobalt and nickel on an iridium surface.

‘Evaporating metals onto a metallic surface in a vacuum is a common procedure,’ Alexander Schneider says. ‘However, this often produces a two-dimensional layer of metal. For the first time, with the help of oxygen, we have managed to produce atom chains that cover the entire iridium surface, are arranged with a regular distance of 0.8 nanometres between each atom and can be up to 500 atoms long, without a single structural fault. This all happens through self assembly, i.e. the chains form without any external help.’

The physicists discovered that the oxygen atoms work like a kind of lifting mechanism that separates the atom chains from the iridium substrate. This gives the chains their one-dimensional character and their magnetic properties. The calculations made by the working group in Vienna showed that the magnetism of the metals changes in the one-dimensional structure: nickel becomes non-magnetic, cobalt remains ferromagnetic, and iron and manganese become antiferromagnetic, which means that the magnetisation direction changes with each atom.

‘What is unique about our process is that, as well as allowing perfect chains of individual materials to grow, it enables chains of alternating metal atoms to form,’ Alexander Schneider explains. ‘This means that we can create mixed systems in which ferromagnetic sections of chains can be separated from antiferromagnetic or non-magnetic sections, for example.’

Potential for new developments in basic research

The discovery of the self-assembling system of perfectly organised magnetic atom chains could lead to new developments in basic research on one-dimensional systems. In particular, further research into a system of pieces of chains with different lengths and magnetic properties will reveal which effects can be expected for increasing miniaturisation in data storage.

Another interesting aspect of the material system that the researchers studied is that, due to the oxygen built into the chains, the properties of the chains are a cross between those of a one-dimensional metal and an oxide. The perfect lateral arrangement of the chains which is preserved over long distances means that research methods that cannot be applied on the atomic scale can be used to study aspects of the atom chains such as their catalytic properties.

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.117.046101

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>