Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic atoms arranged in neat rows

03.08.2016

Physicists at Friedrich-Alexander Universität Erlangen-Nürnberg and the Vienna University of Technology have successfully created one-dimensional magnetic atom chains for the first time. Their break-through provides a model system for basic research in areas such as magnetic data storage, as well as in chemistry. Their results were recently published in the renowned journal Physical Review Letters.

Nanotechnology is revolutionising the way we live by making microelectronic systems even smaller, enabling new developments in diagnosis and treatment in medicine, and giving the surfaces of materials new self-cleaning properties – to name just a few examples.


One-dimensional atom chains: the oxygen molecules (red) separate the metal atoms (yellow&blue) from the iridium substrate (grey). The arrows show the different magnetisation of the different metals.

FAU/Pascal Ferstl

Nanostructures’ unique properties are partly due to the fact that the dimensionality of the materials is limited – such as by only allowing a crystal to grow in two directions or even just one direction instead of three. In essence, ‘one dimensional’ means arranging atoms in a chain.

‘However, an atom chain cannot exist in empty space but must be placed on a substrate,’ explains Prof. Dr. Alexander Schneider from FAU’s Chair of Solid-State Physics. ‘Doing this can cause the desired properties – magnetism in our case – to disappear again. Developing an understanding of these low-dimensional systems is a key research priority, as they are increasingly dominating the properties of magnetic data storage.’

Oxygen allows one-dimensional atom chains to form

Professor Schneider’s team collaborated with the working groups led by Prof. Dr. Klaus Heinz, also from the Chair of Solid-State Physics, and Prof. Dr. Josef Redinger from the Center for Computational Materials Science at the Vienna University of Technology. Together they were able to demonstrate that oxygen enables perfect single-atom chains to grow from manganese, iron, cobalt and nickel on an iridium surface.

‘Evaporating metals onto a metallic surface in a vacuum is a common procedure,’ Alexander Schneider says. ‘However, this often produces a two-dimensional layer of metal. For the first time, with the help of oxygen, we have managed to produce atom chains that cover the entire iridium surface, are arranged with a regular distance of 0.8 nanometres between each atom and can be up to 500 atoms long, without a single structural fault. This all happens through self assembly, i.e. the chains form without any external help.’

The physicists discovered that the oxygen atoms work like a kind of lifting mechanism that separates the atom chains from the iridium substrate. This gives the chains their one-dimensional character and their magnetic properties. The calculations made by the working group in Vienna showed that the magnetism of the metals changes in the one-dimensional structure: nickel becomes non-magnetic, cobalt remains ferromagnetic, and iron and manganese become antiferromagnetic, which means that the magnetisation direction changes with each atom.

‘What is unique about our process is that, as well as allowing perfect chains of individual materials to grow, it enables chains of alternating metal atoms to form,’ Alexander Schneider explains. ‘This means that we can create mixed systems in which ferromagnetic sections of chains can be separated from antiferromagnetic or non-magnetic sections, for example.’

Potential for new developments in basic research

The discovery of the self-assembling system of perfectly organised magnetic atom chains could lead to new developments in basic research on one-dimensional systems. In particular, further research into a system of pieces of chains with different lengths and magnetic properties will reveal which effects can be expected for increasing miniaturisation in data storage.

Another interesting aspect of the material system that the researchers studied is that, due to the oxygen built into the chains, the properties of the chains are a cross between those of a one-dimensional metal and an oxide. The perfect lateral arrangement of the chains which is preserved over long distances means that research methods that cannot be applied on the atomic scale can be used to study aspects of the atom chains such as their catalytic properties.

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.117.046101

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>