Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic atoms arranged in neat rows


Physicists at Friedrich-Alexander Universität Erlangen-Nürnberg and the Vienna University of Technology have successfully created one-dimensional magnetic atom chains for the first time. Their break-through provides a model system for basic research in areas such as magnetic data storage, as well as in chemistry. Their results were recently published in the renowned journal Physical Review Letters.

Nanotechnology is revolutionising the way we live by making microelectronic systems even smaller, enabling new developments in diagnosis and treatment in medicine, and giving the surfaces of materials new self-cleaning properties – to name just a few examples.

One-dimensional atom chains: the oxygen molecules (red) separate the metal atoms (yellow&blue) from the iridium substrate (grey). The arrows show the different magnetisation of the different metals.

FAU/Pascal Ferstl

Nanostructures’ unique properties are partly due to the fact that the dimensionality of the materials is limited – such as by only allowing a crystal to grow in two directions or even just one direction instead of three. In essence, ‘one dimensional’ means arranging atoms in a chain.

‘However, an atom chain cannot exist in empty space but must be placed on a substrate,’ explains Prof. Dr. Alexander Schneider from FAU’s Chair of Solid-State Physics. ‘Doing this can cause the desired properties – magnetism in our case – to disappear again. Developing an understanding of these low-dimensional systems is a key research priority, as they are increasingly dominating the properties of magnetic data storage.’

Oxygen allows one-dimensional atom chains to form

Professor Schneider’s team collaborated with the working groups led by Prof. Dr. Klaus Heinz, also from the Chair of Solid-State Physics, and Prof. Dr. Josef Redinger from the Center for Computational Materials Science at the Vienna University of Technology. Together they were able to demonstrate that oxygen enables perfect single-atom chains to grow from manganese, iron, cobalt and nickel on an iridium surface.

‘Evaporating metals onto a metallic surface in a vacuum is a common procedure,’ Alexander Schneider says. ‘However, this often produces a two-dimensional layer of metal. For the first time, with the help of oxygen, we have managed to produce atom chains that cover the entire iridium surface, are arranged with a regular distance of 0.8 nanometres between each atom and can be up to 500 atoms long, without a single structural fault. This all happens through self assembly, i.e. the chains form without any external help.’

The physicists discovered that the oxygen atoms work like a kind of lifting mechanism that separates the atom chains from the iridium substrate. This gives the chains their one-dimensional character and their magnetic properties. The calculations made by the working group in Vienna showed that the magnetism of the metals changes in the one-dimensional structure: nickel becomes non-magnetic, cobalt remains ferromagnetic, and iron and manganese become antiferromagnetic, which means that the magnetisation direction changes with each atom.

‘What is unique about our process is that, as well as allowing perfect chains of individual materials to grow, it enables chains of alternating metal atoms to form,’ Alexander Schneider explains. ‘This means that we can create mixed systems in which ferromagnetic sections of chains can be separated from antiferromagnetic or non-magnetic sections, for example.’

Potential for new developments in basic research

The discovery of the self-assembling system of perfectly organised magnetic atom chains could lead to new developments in basic research on one-dimensional systems. In particular, further research into a system of pieces of chains with different lengths and magnetic properties will reveal which effects can be expected for increasing miniaturisation in data storage.

Another interesting aspect of the material system that the researchers studied is that, due to the oxygen built into the chains, the properties of the chains are a cross between those of a one-dimensional metal and an oxide. The perfect lateral arrangement of the chains which is preserved over long distances means that research methods that cannot be applied on the atomic scale can be used to study aspects of the atom chains such as their catalytic properties.

Weitere Informationen:

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>