Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magic numbers of quantum matter revealed by cold atoms


Scientists extract the topological number of an artificial solid subjected to extreme effective magnetic fields

Topology, a branch of mathematics classifying geometric objects, has been exploited by physicists to predict and describe unusual quantum phases: the topological states of matter. These intriguing phases, generally accessible at very low temperature, exhibit unique conductivity properties which are particularly robust against external perturbations, suggesting promising technological applications.

Fig. 1: The classification of geometric objects and quantum matter.

Chair of Quantum Optics, LMU

Fig. 2: The Chern-number measurement using an external force.

Chair of Quantum Optics, LMU

The great stability of topological states relies on a set of magic integers, the so-called Chern numbers, which remain immune to defects and deformations. For the first time, an international team of scientists succeeded to measure the topological Chern number in a non-electronic system with high precision.

The experiments were carried out with ultracold bosonic atoms controlled by lasers, in the group of Professor Immanuel Bloch (Ludwig-Maximilians-Universität Munich and Max Planck Institute of Quantum Optics, Garching) in collaboration with Nathan Goldman and Sylvain Nascimbène from the Collège de France and Nigel Cooper from Cambridge University.

Matter forms remarkable phases when it is immersed in extreme environments, such as strong magnetic fields and low temperature. Under these conditions, materials can reach unusual regimes where their electrical properties present universal and exotic behaviours, e.g. dissipationless currents and quantized electrical resistance. This physical framework sets the stage for new phases of matter, the topological states, which are described by magic (topological) integers.

They are mathematical numbers used to classify geometric objects [e.g. the number of holes in a surface, Fig. 1a], and which remain immune to deformations. The outstanding fact that quantum states of matter can be associated with topological numbers guarantees the robustness of their unique electrical properties against perturbations. This suggests numerous promising technological applications, e.g. in spintronics and quantum computation, hence motivating the search for novel topological states of matter in laboratories.

Topological states were discovered in the context of the quantum Hall effect, i.e. through studies of the electrical resistance in materials subjected to strong magnetic fields. After reaching sufficiently low temperatures, the measured resistance was found to form robust plateaus when varying the magnetic field, a behaviour which was shown to be independent of the sample.

Surprisingly, this universal physical property - the quantum Hall effect celebrated by the Nobel prize in 1985 - appeared to be rooted in topology: each resistance plateau is dictated by a topological number, the Chern number. "The beauty of this result relies in the fact that these magic mathematical numbers appear as intrinsic properties of the electrons moving in the material; it is intriguing that these abstract numbers actually lead to extraordinary observable phenomena", says theorist Nathan Goldman.

An interesting route for the search of topological phases of matter is offered by synthetic materials, which consist of ultracold atomic gases controlled by light. In these highly versatile experiments, neutral atoms are trapped in a periodic landscape created by standing waves of lasers. Cold atoms moving in these optical lattices have proven to be very well suited to mimic the dynamics of electrons propagating in real materials. However, in contrast to electrons, cold atoms are charge neutral; hence, they do not exhibit the Hall effect in the presence of a magnetic field. To overcome this limitation, new experimental techniques were developed in Munich in order to engineer effective magnetic fields for neutral atoms. In such arrangements, cold atoms behave as charged particles subjected to strong magnetic fields, offering a new platform to study the Hall effect and topological phases in a highly controllable and clean environment.

The optical-lattice setup realized in the Munich experiment has been specifically tailored so as to exhibit topological properties (Fig. 1b). Indeed, when inducing an effective magnetic field in the lattice, the atomic gas is characterized by a non-zero topological Chern number νch = 1. Nathan Goldman explains: "In this configuration, and in direct analogy with the electric Hall effect, the atomic cloud is expected to experience a characteristic transverse motion in response to an applied force (Fig. 2). Moreover, our theory predicts that this transverse drift should be directly proportional to the topological Chern number (νch = 1)". The experimentalists applied a force to their optical-lattice setup and analyzed such a displacement by taking snap-shots of the cloud.

From this sequence of images, they determined an experimental value for the Chern number νexp = 0.99(5) in excellent agreement with theory. This result constitutes the first Chern-number measurement in a non-electronic system. In contrast to electronic measurements, which are based on currents flowing along the edges of the sample, the Munich Chern-number measurement directly probes the topological nature of the bulk.

These measurements constitute an important step towards the realization and detection of topological states with ultracold atoms. Including interactions between the atoms could generate novel and exciting phases, such as the much sought after fractional Chern insulators. [N.G. and M.A.]

Figure captions:

Fig. 1: The classification of geometric objects and quantum matter. a. Topology classifies these three objects in terms of the number of handles g. The doughnut is equivalent to a mug (g=1), but differs from a ball (g=0). b. Illustration of an atomic gas trapped in a two-dimensional optical lattice: (left panel) a conventional lattice, and (right panel) a lattice subjected to an effective magnetic field. The related quantum phases are associated with different topological (Chern) numbers, schematically illustrated by the ball and the doughnut, respectively.

Fig. 2: The Chern-number measurement using an external force. a. The atoms are not deflected in a conventional lattice with zero Chern number. b. When the Chern number is νch = 1, the atoms are deflected transverse to the force.

Original publication:
M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimb ene, N. R. Cooper, I. Bloch & N. Goldman
Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
Nature Physics, 22 December 2014, Advance Online Publication, DOI:10.1038/nphys3171

Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU München
Schellingstr. 4, 80799 Munich
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -138

Prof. Dr. Nathan Goldman
Collège de France, Laboratoire Kastler Brossel
11, place Marcelin Berthelot
75005 Paris, France, and
Center for Nonlinear Phenomena and Complex Systems,
Université Libre de Bruxelles, CP 231, Campus Plaine,
B-1050 Brussels, Belgium
Phone: +32 2 6505797
E-mail: und

M. Sc. Monika Aidelsburger
LMU München, Faculty of Physics
Schellingstr. 4, 80799 Munich
Phone: +49 (0)89 / 21 80 -6119

Weitere Informationen:

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>