Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Made to order: Researchers discover a new form of crystalline matter

12.11.2015

Experiments reveal a new type of imposed ordering of particles in dusty plasma

Dust is everywhere: under the bed, on the stairs and even inside of plasmas. A team of researchers from Auburn University, the University of Iowa and the University of California, San Diego, using the new Magnetized Dusty Plasma Experiment (MDPX), the first U.S. experiment of its kind, recently discovered a new form of crystalline-like matter in strongly magnetized dusty plasma.


Figure 1: [Left] Typical plasma crystal with a self-ordered, hexagonal arrangement of dust particles indicated by the bright white spots. [Middle] Made to order square pattern formed in an imposed dust crystalline-like structure. [Right] A typical dusty plasma illuminated by a green laser in the MDPX experiment at Auburn University.

Courtesy, Max Planck Institute

A feature of dusty plasmas is that under the proper conditions, usually at higher gas pressures, the dust particles can form self-organized, hexagonal structures--a configuration known as a "plasma crystal."

The striking aspect of the newly discovered crystal structures is that the lattice (spacing between crystal particles) properties can be imposed arbitrarily by an external grid/mesh structure (Figure 1). These new made-to-order crystals can have any geometric pattern, making them distinct from the crystal lattices of ordinary solids and traditional plasma crystals, which are self-organized structures not imposed by external boundary conditions.

In space, scientists observe large dust structures in star-forming regions such as planetary nebula. Small dust grains--the thickness of human hair or smaller--form amazing structures such as Saturn's rings and the long tails of comets. Most of these naturally-occurring dusty plasma systems have a very complex interaction between plasma, magnetic fields and these tiny, charged grains of dust.

On the Earth, this same mixture of plasma, magnetic fields and charged dust grains, is often present in many industrial and research plasmas from semiconductor manufacturing to fusion experiments. In some cases, the dust is considered to be a source of contamination that needs to be controlled and safely removed from the plasma.

But, if the properties of smaller (nanometer-scale) particles can be controlled and manipulated, they could prove to be an important tool in the future of plasma manufacturing.

Ongoing studies on the MDPX show the ability to control the shape of these ordered structures and where they are suspended in the plasma (Figure 2). In the future, this discovery could lead to new approaches to trapping and controlling micro-particles in plasma and further efforts in designing their properties for both fundamental physics investigations and possible processing and industrial applications.

###

Contact: Edward Thomas, (344) 844-4126, etjr@auburn.edu

Abstracts: JP12.00034 Analysis of particle trajectories in a simulated, magnetized dusty plasma in a radially-increasing electric field

NI2.00001 Summary of initial results from the Magnetized Dusty Plasma Experiment (MDPX) device

UP12.00057 A Single Particle Deflection Experiment for MDPX

UP12.00059 Probe induced voids at high magnetic field

UP12.00060 Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma

Sessions Session JP12: Poster Session IV (Education and Outreach; Undergraduate/High School Research; DIII-D I, Diagnostics and Simulation Methods; Low Temperature
Plasmas, Breakdown, Thrusters, and Sheaths)
2:00 PM-5:00 PM, Tuesday, November 17, 2015
Room: Exhibit Hall A

Session NI2: Waves and Instabilities
9:30 AM-12:30 AM, Wednesday, November 18, 2015
Room: Chatham Ballroom C

Session UP12: Poster Session VIII (Pinches, Diagnostics, Codes and Modeling, One Component, Laser-Plasma Ions, Strongly Coupled and Dusty Plasmas)
2:00 PM-5:00 PM, Thursday, November 19, 2015
Room: Exhibit Hall A

Media Contact

Saralyn Stewart
stewart@physics.utexas.edu
512-694-2320

 @APSphysics

http://www.aps.org 

Saralyn Stewart | EurekAlert!

Further reports about: Plasma conditions crystalline crystals magnetic fields structures

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Hot vibrating gases under the electron spotlight

12.12.2017 | Life Sciences

New silicon structure opens the gate to quantum computers

12.12.2017 | Information Technology

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>