Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Made to order: Researchers discover a new form of crystalline matter


Experiments reveal a new type of imposed ordering of particles in dusty plasma

Dust is everywhere: under the bed, on the stairs and even inside of plasmas. A team of researchers from Auburn University, the University of Iowa and the University of California, San Diego, using the new Magnetized Dusty Plasma Experiment (MDPX), the first U.S. experiment of its kind, recently discovered a new form of crystalline-like matter in strongly magnetized dusty plasma.

Figure 1: [Left] Typical plasma crystal with a self-ordered, hexagonal arrangement of dust particles indicated by the bright white spots. [Middle] Made to order square pattern formed in an imposed dust crystalline-like structure. [Right] A typical dusty plasma illuminated by a green laser in the MDPX experiment at Auburn University.

Courtesy, Max Planck Institute

A feature of dusty plasmas is that under the proper conditions, usually at higher gas pressures, the dust particles can form self-organized, hexagonal structures--a configuration known as a "plasma crystal."

The striking aspect of the newly discovered crystal structures is that the lattice (spacing between crystal particles) properties can be imposed arbitrarily by an external grid/mesh structure (Figure 1). These new made-to-order crystals can have any geometric pattern, making them distinct from the crystal lattices of ordinary solids and traditional plasma crystals, which are self-organized structures not imposed by external boundary conditions.

In space, scientists observe large dust structures in star-forming regions such as planetary nebula. Small dust grains--the thickness of human hair or smaller--form amazing structures such as Saturn's rings and the long tails of comets. Most of these naturally-occurring dusty plasma systems have a very complex interaction between plasma, magnetic fields and these tiny, charged grains of dust.

On the Earth, this same mixture of plasma, magnetic fields and charged dust grains, is often present in many industrial and research plasmas from semiconductor manufacturing to fusion experiments. In some cases, the dust is considered to be a source of contamination that needs to be controlled and safely removed from the plasma.

But, if the properties of smaller (nanometer-scale) particles can be controlled and manipulated, they could prove to be an important tool in the future of plasma manufacturing.

Ongoing studies on the MDPX show the ability to control the shape of these ordered structures and where they are suspended in the plasma (Figure 2). In the future, this discovery could lead to new approaches to trapping and controlling micro-particles in plasma and further efforts in designing their properties for both fundamental physics investigations and possible processing and industrial applications.


Contact: Edward Thomas, (344) 844-4126,

Abstracts: JP12.00034 Analysis of particle trajectories in a simulated, magnetized dusty plasma in a radially-increasing electric field

NI2.00001 Summary of initial results from the Magnetized Dusty Plasma Experiment (MDPX) device

UP12.00057 A Single Particle Deflection Experiment for MDPX

UP12.00059 Probe induced voids at high magnetic field

UP12.00060 Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma

Sessions Session JP12: Poster Session IV (Education and Outreach; Undergraduate/High School Research; DIII-D I, Diagnostics and Simulation Methods; Low Temperature
Plasmas, Breakdown, Thrusters, and Sheaths)
2:00 PM-5:00 PM, Tuesday, November 17, 2015
Room: Exhibit Hall A

Session NI2: Waves and Instabilities
9:30 AM-12:30 AM, Wednesday, November 18, 2015
Room: Chatham Ballroom C

Session UP12: Poster Session VIII (Pinches, Diagnostics, Codes and Modeling, One Component, Laser-Plasma Ions, Strongly Coupled and Dusty Plasmas)
2:00 PM-5:00 PM, Thursday, November 19, 2015
Room: Exhibit Hall A

Media Contact

Saralyn Stewart


Saralyn Stewart | EurekAlert!

Further reports about: Plasma conditions crystalline crystals magnetic fields structures

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>