Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LZH contributing to research priority „Hybrid Numerical Optics”


The Laser Zentrum Hannover e.V. (LZH) is working on three subprojects in the new research priority “Hybrid Numerical Optics” of the Hannover Centre for Optical Technologies (HOT) of the Gottfried Wilhelm Leibniz University Hannover. This priority is being supported by the funding initiative „Niedersächsisches Vorab“ with almost one million Euros until the fall of 2018.

In the new competence center for optical simulation, the LZH is working on three subprojects in the areas of high-power glass fiber amplifiers, dielectric coatings and light propagation in fluid columns.

Comparison of an amorphous and a crystalline titanium oxide structure.

Illustration: LZH

A laser beam will be coupled into a liquid column with a core fluid and a jacket fluid.

Illustration: LZH

Highest laser powers

In the subproject „Dynamic light propagation in high output glass fiber amplifiers“, the scientists will be working on increasing the laser power of continuous and pulsed systems for the next three years. Presently, the maximum usable output power of high power fiber systems is limited by the so-called transverse mode instability (TMI).

Here, the laser beam profile begins to fluctuate above a certain output threshold. With a simulation model, the Laser Development Department at the LZH wants to more closely examine the interactions and processes in the fiber amplifier, and thus better understand TMI. Furthermore, they plan to examine another peak power dependent phenomenon, the effects of Kerr nonlinearity on the pulse propagation in fused fiber couplers.

Improving coatings

In the subproject „Structural and optical properties of dielectric coatings“, the Laser Components Department is combining different simulation techniques in order to optimize coating processes. The scientists want to understand how the coating properties and damage behavior is influenced by the coating parameters.

For this purpose, they are combining classical growth models with quantum-mechanical simulation techniques. Thus, they can determine the structural, optical and electronic properties of the coating structures produced.

Liquid-guided laser beam

In the subproject „Simulation of the light-guiding properties in coaxially flowing fluid pairs using wave-optical light propagation in fluid-dynamically and thermally superimposed refractive index distributions”, the beam guidance in flowing liquids will be simulated. The scientists in the Production and Systems Department want to predict light propagation in fluid or gaseous light waveguides using a hybrid approach. In order to do so, they will simulate a flowing liquid column using a two-fluid system.

They will also investigate the propagation of light in this liquid column. Connecting both methods is the main goal of this subproject. A liquid-guided laser beam can be used, for example, for laser materials processing.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>