Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking at complex light wave forms

31.05.2017

Using a new method, researchers can see for the first time how weak electric fields evolve in time

For the first time an international research team under the direction of Prof. Dr. Giuseppe Sansone at the Institute of Physics at the University of Freiburg has been able to completely characterize the complex evolution of weak electric fields. The team just published its research findings in the scientific journal Nature Photonics.


The electronic field moves in complex trajectories as a light pulse propagates.

Graphics: Giuseppe Sansone

Light pulses are electromagnetic waves. Their characteristics such as the direction of oscillation, duration and intensity depend on the spatiotemporal evolution of their electric and magnetic fields. Both of these vectors can run in complex trajectories as a light pulse propagates – for instance, they can move along a circle, an elliptical or describe any variation thereof.

The movement occurs on a timescale of several hundred attoseconds, which is much faster than any ordinary electronic or optoelectronic device can measure: an attosecond is a billionth of a billionth of a second.

In order to observe how the electric field moves anyway, the team developed a method using a so-called attosecond laser. “Using this new tool we were able to produce electrons in the form of wave packets that only last a few hundred attoseconds,“ explains Sansone. During their dynamics, electrons are very sensitive to any kind of external disturbance.

The researchers leveraged this characteristic to modify the electrons’ trajectories with weak visible light pulses. They were then able to measure how the trajectories had been altered, thereby deducing the intensity and direction of the electric field. “Our method will enable researchers in the future to have a complete characterization of electronic dynamics in solids by measuring the visible light reflected on its surface,“ says Sansone.

Researchers at the University of Jena, Max Planck Institute for Nuclear Physics in Heidelberg, the National Metrology Institute of Germany (PTB) in Braunschweig and the Politecnico in Milan and the Istituto di Fotonica e Nanotecnologie (Institute for Photonics and Nanotechnology) in Padua, Italy, contributed significantly to these findings.

Original publication:
P. A. Carpeggiani et al. (2017): Vectorial optical field reconstruction by attosecond spatial interferometry.
In: Nature Photonics. DOI 10.1038/nphoton.2017.73


Contact:
Prof. Dr. Giuseppe Sansone
Institute of Physics
University of Freiburg
Tel.: 0761/203-5738
E-Mail: giuseppe.sansone@physik.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/looking-at-complex-light-wave-forms?se...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>