Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (MPQ) have now achieved a major breakthrough: they demonstrated the long-lived storage of a photonic qubit on a single atom trapped in an optical resonator.


Artist’s view of global teleportation of quantum bits.

Graphic: Christoph Hohmann, Nanosystems Initiative Munich (NIM)

The coherence time of the stored quantum bit outlasts 100 milliseconds and therefore matches the requirement for the creation of a global quantum network in which qubits are directly teleported between end nodes. “The coherence times that we achieve represent an improvement by two orders of magnitude compared to the current state-of-the-art”, says Professor Rempe. (Nature Photonics, 11 December 2017)

Light is an ideal carrier for quantum information encoded on single photons, but transfer over long distances is inefficient and unreliable due to losses. Direct teleportation between the end nodes of a network can be utilized to prevent the loss of precious quantum bits.

First, remote entanglement has to be created between the nodes; then, a suitable measurement on the sender side triggers the “spooky action at a distance”, i.e. the instantaneous transport of the qubit to the receiver’s node.

However, the quantum bit may be rotated when it reaches the receiver and hence has to be reverted. To this end, the necessary information has to be classically communicated from sender to receiver. This takes a certain amount of time, during which the qubit has to be preserved at the receiver. Considering two network nodes at the most distant places on earth, this corresponds to a time span of 66 milliseconds.

In 2011, Professor Rempe’s group has demonstrated a successful technique for storing a photonic quantum bit on a single atom. The atom is placed in the centre of an optical cavity which is formed by two high-finesse mirrors and hold in place by standing light waves.

A single photon which carries the quantum bit in a coherent superposition of two polarization states starts to strongly interact with the single atom once it is sent into the resonator. Ultimately, the photon is absorbed by the atom and the quantum bit is transferred into a coherent superposition of two atomic states. The challenge is to maintain the atomic superposition as long as possible. In former experiments, the storage time was limited to a few hundreds of microseconds.

“The major problem for storing quantum bits is the phenomenon of dephasing,” explains Stefan Langenfeld, a doctoral candidate at the experiment. “Characteristic of a quantum bit is the relative phase of the wave functions of the atomic states that are coherently superimposed. Unfortunately, in real-world experiments, this phase relation is lost over time mostly due to interaction with fluctuating ambient magnetic fields.”

In their current experiment, the scientists take new measures to counteract the impact of those fluctuations. Once the information is transferred from the photon to the atom, the population of one atomic state is coherently transferred to another state. This is done by using a pair of laser beams to induce a Raman transition. In this new configuration, the stored qubit is 500 times less sensitive to magnetic field fluctuations.

Before the retrieval of the stored photonic quantum bit, the Raman transition is reversed. For a storage time of 10 milliseconds, the overlap of the stored photon with the retrieved photon is about 90%. This means, that the mere transfer of the atomic qubit to a less sensitive state configuration extends the coherence time by a factor of 10. Another factor of 10 was gained by adding a so-called “spin echo” to the experimental sequence. Here, the population of the two atomic states used for storage is swapped in the middle of the storage time.

“The new technique allows us to preserve the quantum nature of the stored bit for more than 100 milliseconds”, says Matthias Körber, a doctoral candidate at the experiment. “Although an envisioned global quantum network which allows for secure and reliable transport of quantum information still demands a lot of research, the long-lived storage of quantum bits is one of the key technologies and we believe that the current improvements will bring us a significant step closer to its realization.” Olivia Meyer-Streng

Original publication:

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, G. Rempe
Decoherence-protected memory for a single-photon qubit
Nature Photonics, Advance Online Publication, 11 December 2017, DOI: 10.1038/s41566-017-0050-y

Contact:

Prof. Dr. Gerhard Rempe
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 701
E-mail: gerhard.rempe@mpq.mpg.de

Matthias Körber
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 729
E-mail: matthias.koerber@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>