Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living with a star: NASA and partners survey space weather science

20.04.2017

NASA has long been a leader in understanding the science of space weather, including research into the potential for induced electrical currents to disrupt our power systems. Last year, NASA scientists worked with scientists and engineers from research institutions and industry during a pair of intensive week-long workshops in order to assess the state of science surrounding this type of space weather. This summary was published Jan. 30, 2017, in the journal Space Weather.

Storms from the sun can affect our power grids, railway systems and underground pipelines through a phenomenon called geomagnetically induced currents, or GICs. The sun regularly releases a constant stream of magnetic solar material called the solar wind, along with occasional huge clouds of solar material called coronal mass ejections.


This is a composite image of a coronal mass ejection as seen by the Solar and Heliospheric Observatory.

Credit: ESA, NASA/SOHO

This material interacts with Earth's magnetic field, causing temporary changes. That temporary change to the magnetic field can create electric currents just under Earth's surface. These are GICs.

Long, thin, metal structures near Earth's surface -- such as underground pipelines, railroads and power lines -- can act as giant wires for these currents, causing electricity to flow long distances underground. This electric current can cause problems for all three structures, and it's especially difficult to manage in power systems, where controlling the amount of electric current is key for keeping the lights on. Under extreme conditions, GICs can cause temporary blackouts, which means that studying space weather is a crucial component for emergency management.

"We already had a pretty good grasp of the key moving pieces that can affect power systems," said Antti Pulkkinen, a space weather researcher at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "But this was the first we had solar experts, heliospheric scientists, magnetospheric physicists, power engineers and emergency management officials all in a room together."

Though GICs can primarily cause problems for power systems, railroads and pipelines aren't immune.

"Researchers have found a positive correlation between geomagnetic storms and mis-operation of railway signaling systems," said Pulkkinen, who is also a member of the space weather research-focused Community Coordinated Modeling Center based at Goddard.

This is because railway signals, which typically control traffic at junctures between tracks or at intersections with roads, operate on an automated closed/open circuit system. If a train's metal wheels are on the track near the signal, they close the electrical circuit, allowing electrical current to flow to the signal and turn it on.

"Geomagnetically induced currents could close that loop and make the system signal that there's a train when there isn't," said Pulkkinen.

Similarly, current flowing in oil pipelines could create false alarms, prompting operators to inspect pipelines that aren't damaged or malfunctioning.

In power systems, the GICs from a strong space weather event can cause something called voltage collapse. Voltage collapse is a temporary state in which the voltage of a segment of a power system goes to zero. Because voltage is required for current to flow, voltage collapse can cause blackouts in affected areas.

Though blackouts caused by voltage collapse can have huge effects on transportation, healthcare and commerce, GICs are unlikely to cause permanent damage to large sections of power systems.

"For permanent transformer damage to occur, there needs to be sustained levels of GICs going through the transformer," said Pulkkinen. "We know that's not how GICs work. GICs tend to be much more noisy and short-lived, so widespread physical damage of transformers is unlikely even during major storms."

The scientists who worked on the survey, part of the NASA Living With a Star Institute, also created a list of the key unanswered questions in GIC science, mostly related to computer modeling and prediction. The group members' previous work on GIC science and preparedness has already been used to shape new standards for power companies to guard against blackouts. In September 2016, the Federal Energy Regulatory Commission, or FERC, released new standards that require power companies to assess and prepare for potential GIC disruptions.

"We're really proud that our team members made major contributions to the updated FERC standards," said Pulkkinen. "It also shows that the U.S. is actively working to address GIC risk."

Sarah Frazier | EurekAlert!

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>