Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquids on Fibers - Slipping or Flowing?

01.07.2015

Scientists Reveal Different Dynamics of Droplet Formation on Fibers.

Thin fibers play a tremendous role in daily life, from the use of glass fibers in ultra-fast data transmission to textile fibers. In order to enable special properties of these fibers, they are often coated with a thin liquid layer that is supposed to be stable and homogeneous.


Ein homogener Honigfilm auf einem Faden zerfällt aufgrund der Plateau-Rayleigh-Instabilität in einzelne Tröpfchen (a), ebenso wie der im Modellsystem untersuchte Lackfilm auf einer Glasfaser (b). Foto: H. und S. Haefner und AG Jacobs (Universität des Saarlandes).

However, for the production of drinkable water, the exact opposite features are desired: there, one aims at harvesting water, which is transported along the fiber as a liquid film or as liquid droplets, from fog. Now, scientists have been able to reveal whether liquid films slowly flow along the fiber or if they can slip faster on the fiber.

The team composed of Karin Jacobs and Sabrina Haefner from Saarland University, together with Oliver Bäumchen from the Max Planck Institute for Dynamics and Self-Organization in Göttingen, and colleagues from Canada and France have been able to show for the first time, by means of novel experiments and mathematical models, how a liquid film moves on a fiber, depending on the fiber coating. The results of this study have now been published in the high-ranked journal “Nature Communications”.

Many examples for liquids on fibers are known in nature. Just think about dew droplets on spider webs that you can observe during a walk in the morning. Indeed, humidity is collected on the fiber as droplets, as the liquid surface can be minimized this way. This phenomenon, which can also be observed for a stream of water flowing out of a faucet, is named the Rayleigh-Plateau instability.

“All systems drive towards their energetic minimum, and that is the droplet shape in this case”, says Sabrina Haefner, a physicist in the research group of Karin Jacobs. This instability can be very useful in very dry and remote regions of the world. For example, in Chile’s Atacama desert, the acquisition of drinkable water is essential for the locals and they harvest water from the humidity by means of fiber nets.

In industrial applications, however, it is often necessary to realize stable and homogeneous liquid films on fibers. So how does one manage to avoid this droplet formation? “The surface energy of the liquid, its viscosity, the thickness of the liquid film, as well as the diameter of the fiber, play an important role”, explains Karin Jacobs. The international team of researchers has now found that the properties of the fiber itself also have a strong impact. “The contact between the liquid and the fiber is indeed very important”, says Oliver Bäumchen from the Max Planck Institute for Dynamics and Self-Organization.

“If the liquid slips on the fiber surface, the droplet formation is much faster than in the case of just flow along the fiber”. The team of physicists tested this for liquid films supported by uncoated and Teflon-coated fibers. On uncoated fibers, the liquid film moved rather slowly, and droplet formation took longer, than on coated fibers, where the liquid film was able to slip. “In line with mathematical models, these experiments allow for quantifying ’slippage’ of liquid films and to precisely predict the dynamics of the droplet formation process”, says Sabrina Haefner from Saarland University. The team of researchers agrees: Their results are very important for the design of novel fiber coatings.

The international team of researchers is composed of experimental and theoretical physicists from Saarland University (Saarbrücken, Germany), the Max Planck Institute for Dynamics and Self-Organization (Göttingen, Germany), McMaster University (Hamilton, Canada) and the ESPCI (Paris, France).

The study by S. Haefner, M. Benzaquen, O. Bäumchen, T. Salez, R. Peters, J.D. McGraw, K. Jacobs, E. Raphaél, and K. Dalnoki-Veress with the title “Influence of Slip on the Plateau-Rayleigh Instability on a Fibre“ has been published in the high-ranked journal “Nature Communications”:
http://www.nature.com/ncomms/2015/150612/ncomms8409/full/ncomms8409.html

A picture from the study can be downloaded here: http://www.uni-saarland.de/pressefotos

A video from the study can be found here: https://www.youtube.com/watch?v=jxEUfXvQ_Ms

Contact:

Prof. Dr. Karin Jacobs
Saarland University, Experimental Physics
Tel.: 0049 - 681 302-71788
E-Mail: k.jacobs@physik.uni-saarland.de
http://www.uni-saarland.de/jacobs

Dr. Oliver Bäumchen
Max Planck Institute for Dynamics and Self-Organization Göttingen
Tel.: 0049 - 551 5176-260
E-Mail: oliver.baeumchen@ds.mpg.de
http://www.dcf.ds.mpg.de

Gerhild Sieber | Universität des Saarlandes

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>