Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking superconductivity and structure

27.05.2015

Superconductivity is a rare physical state in which matter is able to conduct electricity--maintain a flow of electrons--without any resistance. It can only be found in certain materials, and even then it can only be achieved under controlled conditions of low temperatures and high pressures. New research from a team including Carnegie's Elissaios Stavrou, Xiao-Jia Chen, and Alexander Goncharov hones in on the structural changes underlying superconductivity in iron arsenide compounds--those containing iron and arsenic. It is published by Scientific Reports.

Although superconductivity has many practical applications for electronics (including scientific research instruments), medical engineering (MRI and NMR machines), and potential future applications including high-performance power transmission and storage, and very fast train travel, the difficulty of creating superconducting materials prevents it from being used to its full potential. As such, any newly discovered superconducting ability is of great interest to scientists and engineers.


This is the tetragonal crystal structure of NaFe2As2, courtesy of Alexander Goncharov. Sodium (Na) is represented by the black balls, iron (Fe) by the red balls, and arsenic (As) by the yellow balls. Courtesy of Alexander Goncharov.

Credit: Alexander Goncharov


This is the collapsed tetragonal crystal structure of NaFe2As2, with arsenic (As) atoms in a 5-fold coordination, courtesy of Alexander Goncharov. Sodium (Na) is represented by the black balls, iron (Fe) by the red balls, and arsenic (As) by the yellow balls. Courtesy of Alexander Goncharov.

Credit: Alexander Goncharov

Iron arsenides are relatively recently discovered superconductors. The nature of superconductivity in these particular materials remains a challenge for modern solid state physics. If the complex links between superconductivity, structure, and magnetism in these materials are unlocked, then iron arsenides could potentially be used to reveal superconductivity at much higher temperatures than previously seen, which would vastly increase the ease of practical applications for superconductivity.

When iron arsenide is combined with a metal--such as in the sodium-containing NaFe2As2 compound studied here--it was known that the ensuing compound is crystallized in a tetrahedral structure. But until now, a detailed structure of the atomic positions involved and how they change under pressure had not been determined.

The layering of arsenic and iron (As-Fe-As) in this structure is believed to be key to the compound's superconductivity. However, under pressure, this structure is thought to be partially misshapen into a so-called collapsed tetragonal lattice, which is no longer capable of superconducting, or has diminished superconducting ability.

The team used experimental evidence and modeling under pressure to actually demonstrate these previously theorized structural changes--tetragonal to collapsed tetragonal--on the atomic level. This is just the first step toward definitively determining the link between structure and superconductivity, which could potentially make higher-temperature superconductivity a real possibility.

They showed that at about 40,000 times normal atmospheric pressure (4 gigapascals), NaFe2As2 takes on the collapsed tetragonal structure. This changes the angles in the arsenic-iron-arsenic layers and is coincident with the loss in superconductivity. Moreover, they found that this transition is accompanied by a major change in bonding coordination in the formation of the interlayer arsenic-arsenic bonds. A direct consequence of this new coordination is that the system loses its two-dimensionality, and with it, superconductivity.

"Our findings are an important step in identifying the hypothesized connection between structure and superconductivity in iron-containing compounds," Goncharov said. "Understanding the loss of superconductivity on an atomic level could enhance our ease of manufacturing such compounds for practical applications, as well as improving our understanding of condensed matter physics."

###

The paper's other co-authors are: Artem Oganov of Stony Brook University, the Moscow Institute of Physics and Technology, and Northwestern Polytechnical University Xi'an; and Ai-Feng Wang, Ya-Jun Yan, Xi-Gang Luo, and Xian-Hui Chen of the University of Science and Technology of China, Hefei, Anhui;

This work was supported by DARPA, the Carnegie Institution of Canada, EFree (the DOE EFRC center at the Carnegie Institution for Science), the government of the Russian Federation, the Ministry of Education and Science of the Russian Federation.

GSECARS is supported by the U.S. NSF and DOE Geosciences. Use of the APS was supported by the DOE-BES. Calculations were performed on XSEDE facilities and on the cluster of the Center for Functional Nanomaterials, BNL, which is supported by the DOE-BES. Sample growth was supported by the Natural Science Foundation of China, the ''Strategic Priority Research Program (B)'' of the Chinese Academy of Sciences, and the National Basic Research Program of China.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Alexander Goncharov
agoncharov@carnegiescience.edu
202-478-8947

 @carnegiescience

http://www.ciw.edu 

Alexander Goncharov | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>