Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-induced Magnetic Waves in Materials Engineered at the Atomic Scale

07.07.2015

Researchers explore ultrafast control of magnetism across interfaces: A new study discovers how the sudden excitation of lattice vibrations in a crystal can trigger a change of the magnetic properties of an atomically-thin layer that lies on its surface.

A research team, led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg, the University of Oxford, and the Université de Genève, used extremely short X-ray pulses from a free-electron laser to discover that melting of magnetic order in the thin layer is initiated at its interface with the substrate and progressively moves into the interior of the film on an ultra-short time scale. This novel type of ultrafast light control in materials engineered at the atomic scale may lead to new prospects in magnetic storage technologies. The results are reported online in the journal Nature Materials.


This image depicts the magnetic ordering, i.e. the antiparallel spin alignment, present in the NdNiO3 thin film that is grown on a LaAlO3 crystal substrate. A short mid-infrared laser pulse triggers vibrations in the substrate, indicated by the smeared oxygen atoms in red. This atomic motion initiates melting of the magnetic order in the functional film, starting locally at the interface between the two materials and progressively moving into the interior of the film.

Transition metal oxides, such as manganites, cuprates or nickelates, have attracted enormous interest among researchers since their electric and magnetic properties can be altered by even subtle changes of external parameters, such as temperature, and electric or magnetic fields. “But there is also a strong correlation between the atomic arrangement of the crystal lattice and these properties, so that controlled structural modifications allow for tuning the electronic and magnetic state of these materials, too,” said Michael Först, scientist at the Max Planck Institute and one of the lead authors of this work.

More recently, researchers started studying heterostructures composed of different oxide materials. An atomically-thin oxide film on a substrate can have properties very different from its bulk form due to a variety of interface effects, including mechanical strain produced at the interface between the substrate and the film. This makes complex oxide heterostructures a versatile tool for engineering materials and devices properties. “In the present work, we studied the possibility to dynamically control the properties of a thin functional film by modifying the atomic structure of the substrate with light,” said Andrea Caviglia, now at the Kavli Institute of Nanoscience at Delft University of Technology.

At cryogenic temperatures, neodymium nickelate (NdNiO3) is an antiferromagnetic insulator, i.e. the spins of the valence electrons align in an alternating pattern with no resulting net magnetization. Above 200 K, this material becomes a metal and the antiferromagnetic spin ordering disappears concomitantly. When an epitaxial NdNiO3 thin film is grown on a lanthanum aluminate (LaAlO3) substrate, the slightly different lattice constants of the two materials induce static strain in the film leading to a reduction of the insulator–metal-transition temperature from 200 K of the bulk material to about 130 K.

Interestingly, the electrical properties of the NdNiO3 film can be changed on ultrafast time scales by selectively exciting lattice vibrations in the LaAlO3 substrate. This was shown in an earlier publication of the main authors in Physical Review Letters. “In that experiment, a mid-infrared laser pulse at 15 µm wavelength triggered a vibrational mode in the substrate and a drastic change of electrical conductivity in the nickelate film was observed by measuring the change of the sample reflectivity with a terahertz, that is far-infrared, pulse,” said Caviglia.

In the current work, the group studied the effect this substrate excitation has on the magnetic properties of the nickelate film. To measure these changes with high spatial and temporal resolution, the team used a technique called time-resolved resonant soft X-ray diffraction at the Linac Coherent Light Source (LCLS) free-electron laser at SLAC, California. The LCLS femtosecond X-ray pulses scatter off the film, carrying time-stamped signatures of the material’s spin ordering that the physicists then used to reconstruct the spatiotemporal magnetic dynamics.

First, the researchers found that the magnetic ordering melts on a timescale of few picoseconds, i.e. at similar time scales as the insulator–metal transition observed earlier, thus suggesting that both processes are connected.

“Even more interestingly, the diffraction experiment showed that the magnetic melting in the nickelate starts locally at the interface to the substrate and propagates, comparable to a wave, from there into the NdNiO3 film,” said Först. “The high speed at which this wave front propagates, indicates that these dynamics are driven by local changes of the electronic structure at the interface”, he added.

Indeed, a theoretical model, assuming the creation of freely movable charge carriers at the hetero-interface by the substrate lattice vibrations, supports this picture. These charges are likely to scramble the antiferromagnetic order as they propagate into the film.

This work was made possible by the ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC), which brings together scientists from the institutions listed above. Further institutions involved in the collaboration are the Diamond Light Source, the Brookhaven National Laboratory, the Lawrence Berkeley National Laboratory, the Stanford Linear Accelerator Center, and the National University of Singapore. CFEL is a cooperation of DESY, the Max Planck Society and the University of Hamburg.


Contact person:

Dr. Michael Först
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-5360
michael.foerst@mpsd.mpg.de

Original publication:

M. Först, A. D. Caviglia, R. Scherwitzl, R. Mankowsky, P. Zubko, V. Khanna, H. Bromberger, S. B.Wilkins, Y.-D. Chuang, W. S. Lee, W. F. Schlotter, J. J. Turner, G. L. Dakovski, M. P. Minitti, J. Robinson, S. R. Clark, D. Jaksch, J.-M. Triscone, J. P. Hill, S. S. Dhesi, and A. Cavalleri, "Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface", Nature Materials, 2015; DOI: 10.1038/nmat4341

Weitere Informationen:

http://dx.doi.org/10.1038/nmat4341 Original publication
http://qcmd.mpsd.mpg.de/ Research group of Prof. Dr. Andrea Cavalleri
http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>