Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and Darkness after the Big Bang: Compact galaxies reheated the early universe

14.01.2016

What brought the dark ages directly following the Big Bang to an end? So-called "green pea" galaxies, which produce intensive UV radiation, are considered a possible explanation. Now researchers have examined a green pea in detail and found that it indeed emits sufficient radiation to explain cosmic reionization: The transition when most of the intergalactic hydrogen in the universe became separated into protons and electrons, starting 150 million years after the Big Bang. The result contributes to our knowledge about one of the least-known epochs of the universe, and has been published in the January 14 edition of the journal Nature.

After the Big Bang 13.8 billion years ago, the universe cooled down rapidly, and within less than a million years the cosmos became completely dark. The transition from this dark age to the epoch of the first stars and galaxies is one of the least-understood periods in cosmic history.


The "green pea" galaxy J0925+1403 as imaged with the Hubble Space Telescope. This is a smoothed-out false color image in the near-UV (HST/COS around 230 nm), colored green to evoke the green color the galaxy would have if imaged in visible light.

At about 6000 light-years, the diameter of the galaxy is less than 1/15 the diameter of the (visible parts of) the Milky Way Galaxy. Astronomers found that 8% of the intense UV radiation produced in this galaxy escaped into the surrounding space - enough for galaxies of this type to have caused the reionization of the universe shortly after the Big Bang.

Image: Ivana Orlitová, Astronomical Institute, Czech Academy of Sciences (Prague)

Now, astronomers including Gabor Worseck from the Max Planck Institute for Astronomy have confirmed that compact low-mass galaxies known as "green peas", which form new stars at impressive rates, could have been key players in that transition.

Such green peas are interesting candidates as drivers of reionization, which set in roughly 150 million years after the Big Bang, when most of the hydrogen atoms in the early universe were separated into electrons and protons. Star-forming galaxies like this should produce a significant number of massive stars, which in turn produce ultraviolet radiation sufficiently energetic to ionize hydrogen.

But so far, nobody had been able to show that galaxies of this type emit sufficient amounts of high-energy radiation to drive reionization - on the contrary, all previous observations had shown galaxies where most of the ultraviolet radiation is absorbed within the galaxy itself, with the remainder insufficient to account for reionization.

Moreover, direct observations of the escaping ultraviolet radiation are possible only in the nearby Universe: For really distant galaxies, almost all such radiation will be absorbed by intergalactic hydrogen before reaching Earth.

That is why the researchers, led by Yuri Izotov of the National Academy of Sciences of Ukraine, set out to find intensely star-forming green pea galaxies in the nearby universe, using data from the Sloan Digital Sky Survey (SDSS) to select promising candidates. The five top candidates were then observed with the Hubble Space Telescope.

This is where Gabor Worseck came in, a post-doctoral researcher at MPIA. As Worseck explains: "These observations were an ideal fit for a method of analyzing Hubble spectral data that I had developed over the last years. In this way, we were able to measure precisely the amount of ultraviolet radiation emitted by the five green pea galaxies."

One candidate galaxy in particular, with the designation J0925+1403, proved particularly efficient: a sizeable 8% of its ultraviolet radiation leak out into the surrounding space, where it should be able to ionize intergalactic hydrogen gas more than 40 times as massive than the galaxy itself.

The discovery shows that green pea galaxies should indeed be sufficiently powerful to have brought about reionization. Ancient specimens of this type of galaxy could well be responsible for lifting the universe out of its dark age directly after the Big Bang.

Background information

The work described here is published as Y. I. Izotov et al., "Lyman continuum leaking from the compact star-forming dwarf galaxy J0925+1403" in the January 14, 2016 edition of the journal Nature. Media representatives should contact r.walton@nature.com for access to the article.

Markus Pössel | Max Planck Institute for Astronomy, Heidelberg
Further information:
http://www.mpia.de/news/science/2016-02-green-pea

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>