Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and Darkness after the Big Bang: Compact galaxies reheated the early universe

14.01.2016

What brought the dark ages directly following the Big Bang to an end? So-called "green pea" galaxies, which produce intensive UV radiation, are considered a possible explanation. Now researchers have examined a green pea in detail and found that it indeed emits sufficient radiation to explain cosmic reionization: The transition when most of the intergalactic hydrogen in the universe became separated into protons and electrons, starting 150 million years after the Big Bang. The result contributes to our knowledge about one of the least-known epochs of the universe, and has been published in the January 14 edition of the journal Nature.

After the Big Bang 13.8 billion years ago, the universe cooled down rapidly, and within less than a million years the cosmos became completely dark. The transition from this dark age to the epoch of the first stars and galaxies is one of the least-understood periods in cosmic history.


The "green pea" galaxy J0925+1403 as imaged with the Hubble Space Telescope. This is a smoothed-out false color image in the near-UV (HST/COS around 230 nm), colored green to evoke the green color the galaxy would have if imaged in visible light.

At about 6000 light-years, the diameter of the galaxy is less than 1/15 the diameter of the (visible parts of) the Milky Way Galaxy. Astronomers found that 8% of the intense UV radiation produced in this galaxy escaped into the surrounding space - enough for galaxies of this type to have caused the reionization of the universe shortly after the Big Bang.

Image: Ivana Orlitová, Astronomical Institute, Czech Academy of Sciences (Prague)

Now, astronomers including Gabor Worseck from the Max Planck Institute for Astronomy have confirmed that compact low-mass galaxies known as "green peas", which form new stars at impressive rates, could have been key players in that transition.

Such green peas are interesting candidates as drivers of reionization, which set in roughly 150 million years after the Big Bang, when most of the hydrogen atoms in the early universe were separated into electrons and protons. Star-forming galaxies like this should produce a significant number of massive stars, which in turn produce ultraviolet radiation sufficiently energetic to ionize hydrogen.

But so far, nobody had been able to show that galaxies of this type emit sufficient amounts of high-energy radiation to drive reionization - on the contrary, all previous observations had shown galaxies where most of the ultraviolet radiation is absorbed within the galaxy itself, with the remainder insufficient to account for reionization.

Moreover, direct observations of the escaping ultraviolet radiation are possible only in the nearby Universe: For really distant galaxies, almost all such radiation will be absorbed by intergalactic hydrogen before reaching Earth.

That is why the researchers, led by Yuri Izotov of the National Academy of Sciences of Ukraine, set out to find intensely star-forming green pea galaxies in the nearby universe, using data from the Sloan Digital Sky Survey (SDSS) to select promising candidates. The five top candidates were then observed with the Hubble Space Telescope.

This is where Gabor Worseck came in, a post-doctoral researcher at MPIA. As Worseck explains: "These observations were an ideal fit for a method of analyzing Hubble spectral data that I had developed over the last years. In this way, we were able to measure precisely the amount of ultraviolet radiation emitted by the five green pea galaxies."

One candidate galaxy in particular, with the designation J0925+1403, proved particularly efficient: a sizeable 8% of its ultraviolet radiation leak out into the surrounding space, where it should be able to ionize intergalactic hydrogen gas more than 40 times as massive than the galaxy itself.

The discovery shows that green pea galaxies should indeed be sufficiently powerful to have brought about reionization. Ancient specimens of this type of galaxy could well be responsible for lifting the universe out of its dark age directly after the Big Bang.

Background information

The work described here is published as Y. I. Izotov et al., "Lyman continuum leaking from the compact star-forming dwarf galaxy J0925+1403" in the January 14, 2016 edition of the journal Nature. Media representatives should contact r.walton@nature.com for access to the article.

Markus Pössel | Max Planck Institute for Astronomy, Heidelberg
Further information:
http://www.mpia.de/news/science/2016-02-green-pea

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>