Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers for Fast Internet in Space – Space Technology from Aachen

23.06.2015

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the Sentinel-2A satellite aboard a VEGA launcher.


Ready for lift-off: Vega launcher rocket.

ESA-M. Pedoussaut, 2015


Diode-laser pump module for the laser communications terminal (LCT) of TESAT Spacecom.

Fraunhofer ILT, Aachen

It is the first of two satellites which will be used to improve environmental monitoring under the European Copernicus program. To transfer the extensive image data, a new technology is being used: The data are sent to a relay satellite with a laser beam and sent from there to the ground station.

Both Sentinel-2 satellites will monitor the status of forests and farmland from space. It should also provide data on the pollution of lakes and coastal waters. Its images of floods, volcanic eruptions and landslides will be a great help to react quickly in case of disaster and to coordinate humanitarian assistance more efficiently.

In 2014 the European Space Agency ESA established a fast data connection between near-Earth satellites and those more remote. Cutting-edge laser technology enables a transfer rate of up to 1.8 Gbit/s over a maximum of 40,000 km, which is about 30 times faster than what has previously been possible. This monitoring system for environment and security, where time play a critical role, is seen as an application like the European Copernicus program.

The technology for the ground-breaking data link comes from Germany: the so-called Laser Communication Terminal (LCT) was developed by the Space Administration of the German Aerospace Center (DLR) with funds from the Federal Ministry of Economics and Technology (BMWi) and Tesat-Spacecom in charge. In collaboration with Tesat-Spacecom, Fraunhofer ILT planned, qualified and mounted the space-ready diode-laser pump module.

From conception to design, manufacture and testing, Fraunhofer ILT provides all the expertise for the development of laser and optical modules for use in the aerospace industry. This know-how is based on decades of experience in various missions and research projects.

Fraunhofer as a system provider for space components

The Fraunhofer ILT is member of the Fraunhofer Alliance for Space, a consortium of 15 institutions that operate in the field of applied research for space technology.

Contact

Dipl.-Ing., Dipl.-Wirtsch.-Ing. Martin Traub
Group Leader Optics Design and Diode Lasers
Telephone +49 241 8906-342
martin.traub@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Hans-Dieter Hoffmann
Leader of the competence area Lasers and Laser Optics
Telephone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>