Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser “ruler” holds promise for hunting exoplanets

18.02.2015

The hunt for Earth-like planets around distant stars could soon become a lot easier thanks to a technique developed by researchers in Germany.

In a paper published today, 18 February, in the Institute of Physics and German Physical Society’s New Journal of Physics, the team of researchers have successfully demonstrated how a solar telescope can be combined with a piece of technology that has already taken the physics world by storm—the laser frequency comb (LFC).

It is expected the technique will allow a spectral analysis of distant stars with unprecedented accuracy, as well as advance research in other areas of astrophysics, such as detailed observations of the Sun and the measurement of the accelerating universe by observing distant quasars.

The LFC is a tool for measuring the colour — or frequency — of light, and has been responsible for generating some of the most precise measurements ever made. An LFC is created by a laser that emits continuous pulses of light, containing millions of different colours, often spanning almost the entire visible spectrum.

When the different colours are separated based on their individual frequencies — the speed with which that particular light wave oscillates — they form a “comb-like” graph with finely spaced lines, or “teeth”, representing the individual frequencies.

This “comb” can then be used as a “ruler” to precisely measure the frequency of light from a wide range of sources, such as lasers, atoms or stars.

In their study, the researchers, from the Max Planck Institute of Quantum Optics, the Kiepenheuer Institute for Solar Physics and the University Observatory Munich, performed an analysis on the Sun by combining sunlight from the Kiepenheuer Institute’s solar telescope in Tenerife with the light of an LFC. Both sources of light were injected into a single optical fibre which then delivered the light to a spectrograph for analysis.

Lead author of the study Rafael Probst, of the Max Planck Institute of Quantum Optics, said: “An important aspect of our work is that we use a single-mode fibre, which takes advantage of the wave nature of light to enable a very clean and stable beam at its output. This type of fibre is quite common in telecom and laser applications, but its applications in astronomy are still largely unexplored. The LFC at the solar telescope on Tenerife is the first installation for astronomical use based on single-mode fibres.

“Our results show that if the LFC light and the sunlight are simultaneously fed through the same single-mode fibre, the obtained calibration precision improves by about a factor of 100 over a temporally separated fibre transmission.

“We then obtain a calibration precision that keeps up with the best calibration precision ever obtained on an astrophysical spectrograph, and we even see considerable potential for further improvement.”

Indeed, the researchers envisage using the new technique to not only study the star at the centre of our solar system, but stars much further away from us, particularly to find Earth-like planets that may be orbiting around them.

When a planet orbits a star, the star does not stay completely stationary, but instead moves in a very small circle or ellipse. When viewed from a distance, these slight changes in speed cause the star’s light spectrum to change a process known as a Doppler shift.

If the star is moving towards the observer, then its spectrum would appear slightly shifted towards the blue end of the spectrum; if it is moving away, it will be shifted towards the red end of the spectrum.

The researchers believe that an LFC would allow them to measure these Doppler shifts much more accurately and therefore increase the chances of spotting Earth-sized, habitable planets.

With conventional calibration techniques, the researchers state that they could measure a change in speed of roughly 1 m/s over large time periods; an LFC could enable measurements with an accuracy of 1 cm/s.

“In astronomy, LFCs are still a novelty and non-standard equipment at observatories. This however, is about to change, and LFC-assisted spectroscopy is envisioned to have a flourishing future in astronomy. Our present work shows how future astronomical LFCs could be utilized,” Probst concludes.

The work is a collaboration comprising the Max Planck Institute of Quantum Optics in Garching, Germany, the Kiepenheuer Institute for Solar Physics in Freiburg, Germany, and the University Observatory Munich in Munich, Germany. Among the contributors are guest scientists from the National Astronomical Observatories of China in Beijing. Menlo Systems GmbH in Martinsried, Germany, is part of the collaboration as an industrial partner.

[IOP Publishing press release]

Contact:

Rafael Probst
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 509
E-mail: rafael.probst@mpq.mpg.de

Dr. Ronald Holzwarth
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germnay
Phone: +49 (0)89 / 32 905 - 255
E-mail: ronald.holzwarth@mpq.mpg.de

Prof. Dr. Theodor W. Hänsch
Professor of Experimental Physics,
Ludwig-Maximilians-Universität, Munich
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 712
E-mail: t.w.haensch@mpq.mpg.de

Weitere Informationen:

http://iopscience.iop.org/1367-2630/17/2/023048 (Link to paper download)

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>