Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser pulses reveal the superconductors of the future

10.05.2017

Thanks to innovative laser techniques, a class of materials shows a new potential for energy efficiency. The research is published in Nature Physics

Another step forward towards superconductivity at room temperature: an experiment at the cutting edge of condensed matter physics and materials science has revealed that the dream of more efficient energy usage can turn into reality. An international collaboration, led by the scientists of Italy's International School for Advanced Studies (SISSA) in Trieste, Università Cattolica di Brescia and Politecnico di Milano used suitably tailored laser pulses to snap the electronic interactions in a compound containing copper, oxygen and bismuth.


Thanks to innovative laser techniques, a class of materials shows a new potential for energy efficiency.

Credit: Pixabay

They were thus able to identify the condition for which the electrons do not repel each other, that is an essential prerequisite for current to flow without resistance. This research opens new perspectives for the development of superconducting materials with applications in electronics, diagnostics and transport. The study has just been published in Nature Physics.

Using sophisticated laser techniques that make it possible to investigate the so-called non-equilibrium regime, the scientists found a very innovative way to understand the properties of a special class of materials. The SISSA team dealt with the theoretical aspects of the research while the I-LAMP labs of Università Cattolica del Sacro Cuore (Brescia) and Politecnico di Milano coordinated the experimental side.

"One of the greatest obstacles to exploit superconductivity in everyday technology is that the most promising superconductors tend to turn into insulators at high temperatures and for low doping concentrations", the scientists explained. "This is because the electrons tend to repel each other instead of pairing up and moving in the direction of the current flow".

To study this phenomenon, the researchers focused on a specific superconductor, which has highly complex physical and chemical properties, being composed of four different types of atom including copper and oxygen. "Using a laser pulse, we drove the material out of its equilibrium state. A second, ultra-short pulse then enabled us to disentangle the components that characterise the interaction between the electrons while the material was returning to equilibrium. Metaphorically, it was like taking a series of snapshots of the different properties of that material at different moments".

Through this approach, the scientists found that "in this material, the repulsion between the electrons, and therefore their insulating properties, disappears even at room temperature. It is a very interesting observation as this is the essential prerequisite for turning a material into a superconductor".

What is the next step in achieving this? "We will be able to take this material as a starting point and change its chemical composition, for example", the researchers explained. Having discovered that the prerequisites for producing a superconductor at room temperature exist, scientists now have new tools at their disposal for finding the correct recipe: by changing a few ingredients, they might not be too far away from the right formula.

Its applications? The magnetic field generated by passing a current through a superconductor could be used for a new generation of magnetic levitation trains - like the one that already links Shanghai to its airport - featuring far better performances and efficiency. In diagnostics, it would be possible to generate very large magnetic fields in extremely small spaces, thus making it possible to perform high-accuracy magnetic resonance imaging on a very small scale. In the field of energy transport or microelectronics, high-temperature superconductors would provide extremely high efficiency and, at the same time, considerable energy savings.

Media Contact

Donato Ramani
ramani@sissa.it
39-342-802-2237

http://www.sissa.it 

Donato Ramani | EurekAlert!

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
23.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>