Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser pulses: conductors for protons


Using ultrashort laser pulses an international team at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich has managed to manipulate the positions of atoms in hydrocarbon molecules.

Light can conduct the play of atoms and molecules in the microcosm. Humans manage to interfere with this play. Researchers from the Laboratory of Attosecond Physics (LAP) of the Max Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität (LMU) and from the Department of Chemistry at the LMU have now used light to reconfigure hydrocarbons. Using ultrashort laser pulses they removed an outer hydrogen atom from one side of a hydrocarbon molecule and directed it to the opposite side, where it reattached. The method could be used in the future to synthesize new substances by controlling chemical reactions.

Laser physicists steer atoms in molecules with light: A laser pulse removed an outer hydrogen atom from one side of a hydrocarbon molecule and directed it to the opposite side, where it rebounded.

Image: Alexander Gelin

Everything in these experiments happens unbelievably fast – within just a few millionths of a billionth of a second. An ultrashort laser pulse hits an acetylene molecule. The symmetric, linear hydrocarbon molecule with one hydrogen atom on each outer side starts to wobble, and is ionized, causing the molecule to become aligned within the laser field. On an extremely short timescale, a hydrogen atom on one side detaches and migrates to the other side, where it rebinds.

The researchers from the Laboratory of Attosecond Physics at MPQ and LMU, and from the Department of Chemistry at LMU, were able to control the directionality of this reaction. The experimental observations and their underlying mechanisms were elucidated by quantum-mechanical simulations performed in Prof. Regina de Vivie-Riedle’s group. Using laser pulses lasting only a few femtoseconds, the physicists influenced the vibrations of the acetylene molecules in such a way that they could selectively remove a particular hydrogen atom from either the left or right side of the molecule.

The hydrogen atom then spontaneously migrated across the molecule to the other side, resulting in the formation and release of the chemical vinylidene. The researchers have also used the technique to reconfigure allene, a larger molecule belonging to the same group of hydrocarbons as acetylene. In doing so, they demonstrated that their method also worked for hydrocarbons with longer chain lengths.

Motions of electrons and atoms are fundamental to chemical processes in nature. With laser technology, researchers are developing ways to influence these motions. “Our experiments have shown that we are not only able to direct electrons in the microcosm, but also hydrogen atoms, which are about 2000-times heavier”, says Prof. Matthias Kling, the leader of the Ultrafast Nanophotonics group at the LAP. “In both cases it is the wave nature of the controlled particles that is responsible for the underlying mechanism“, as Prof. de Vivie-Riedle explains.

The researchers have thus reconfigured matter with the aid of light in their experiment. “We hope that we will be able to take apart various kinds of substances in the future and put them back together at will”, says Kling. Such a light-driven mode of chemical synthesis could help to fabricate new substances in the future. This prospect is particularly appealing in medicine and the design of new drugs. Thorsten Naeser

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>