Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser device can detect alcohol in cars, say authors in Journal of Applied Remote Sensing

03.06.2014

External device detects presence of alcohol vapors inside of a moving car

A new open-access article in the Journal of Applied Remote Sensing is garnering attention for research that could aid in the campaign to prevent drunk driving: a device that can detect alcohol in cars. The Journal of Applied Remote Sensing is published by SPIE, the international society for optics and photonics.

The article "Stand-off detection of alcohol in car cabins," by Jarosław Młyńczak, Jan Kubicki, and Krzysztof Kopczyński of the Military University of Technology in Warsaw, details experiments using an external laser device to detect the presence of alcohol vapors inside of a moving car. The device was constructed at the university's Institute of Optoelectronics based on previous research from a 2013 paper by the same authors.

Stand-off detection is a chemical and biological compound identification method using a laser that takes place at a distance from people to reduce the potential for damage. The authors note that the use of stand-off detection for chemical identification is already described in many papers, but that developments in the types of lasers that can be used in this application have been made in recent years, including "eye-safe" microchip lasers.

"This work illustrates how remote sensing technologies affect our everyday life," said Marco Gianinetto of the Politecnico di Milano, an associate editor with the journal. "We all are already familiar with laser instruments used by the police for speed-limit enforcement. Now these researchers have demonstrated how a laser device could be effectively used for detecting drunken drivers and thereby helping to reduce the number of accidents caused by drivers under the influence of alcohol. In the future, a similar technology may be developed to detect different chemical compounds, enabling the detection of drivers under the influence of other intoxicants."

The use of the device is simple: The laser system is set up on the side of the road to monitor each car that passes by. If alcohol vapors are detected in the car, a message with a photo of the car including its number plate is sent to a police officer waiting down the road. Then, the police officer stops the car and checks for signs of alcohol using conventional tests.

The authors note that the device would likely also identify cars where the driver is sober but the passengers are not, or if there is spilled alcohol in the car, but that the device "will surely decrease the number of cars that have to be checked by police and, at the same time, will increase efficacy of stopping drunken drivers."

The device was tested with a car deployed on the road while the laser stayed in the laboratory next to an open window, making it possible to extensively monitor the device.

The researchers simulated alcohol vapor coming from a human lung by evaporating a water solution of alcohol of an appropriate concentration and at an appropriate temperature. The results showed that the presence of alcohol vapors was detected at concentrations of 0.1% and greater.

"From the practical point of view, there seem to be some countermeasures, such as driving with windows open, solar screens on the side windows, etc., that can be applied by drivers to deceive the system," the authors wrote in their conclusion. "However, such situations are very easily detected by the system, which sends this information to the policeman indicating that the car should be checked."

Other issues, including driving with air-conditioning or fans, will be investigated in the next stages of the ongoing project, as well as addressing commercialization concerns including creating a device that is more compact, robust and user-friendly.

###

The Journal of Applied Remote Sensing is published under Editor-in-Chief Ni-Bin Chang, University of Central Florida, in the SPIE Digital Library, which contains nearly 400,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year. Abstracts are freely searchable, and an increasing number of full journal articles are published with open access.

SPIE is the international society for optics and photonics, a not-for-profit organization founded in 1955 to advance light-based technologies. The Society serves nearly 256,000 constituents from approximately 155 countries, offering conferences, continuing education, books, journals, and a digital library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided more than $3.2 million in support of education and outreach programs in 2013.

Amy Nelson | Eurek Alert!
Further information:
http://www.spie.org

Further reports about: Laser Photonics SPIE air-conditioning alcohol concentrations conventional lasers optics technologies

More articles from Physics and Astronomy:

nachricht Telescopes team up to find distant Uranus-sized planet through microlensing
31.07.2015 | NASA/Goddard Space Flight Center

nachricht California 'rain debt' equal to average full year of precipitation
31.07.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>