Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-based X-ray Imaging Picks Up Speed

17.04.2018

Using a novel, laser-based X-ray technique, laser physicists in Garching have imaged a bone sample in three dimensions by microtomography within minutes, thus taking a significant step towards the medical application of the technology.

Researchers from Ludwig-Maximilians-Universität (LMU), the Max Planck Institute of Quantum Optics (MPQ) and the Technical University of Munich (TUM) have taken a major step towards the clinical application of a new laser-based source of X-rays.


The further development of ATLAS, the high-performance laser in LMU’s Laboratory for Extreme Photonics, paved the way for the tomographic reconstruction of the three-dimensional fine structure of a bone sample within a few minutes. (Photo: Thorsten Naeser)

They recently demonstrated that the instrument enables the tomographic reconstruction of the three-dimensional fine structure of a bone sample within a few minutes. Up to now, laser-based measurements of this sort took several hours.

The breakthrough was made possible by the further development of ATLAS, the high-performance laser in LMU’s Laboratory for Extreme Photonics (LEX Photonics) der LMU on the Research Campus in Garching. Reconstruction of the sample from the imaging data was also facilitated by the use of specially designed computer programmes.

The X-rays used for medical imaging or to inspect the contents of passengers’ baggage at airports are produced by X-ray tubes, whose design has remained essentially unchanged for over a century. Research scientists prefer to use what is known as synchrotron radiation as an X-ray source.

Synchrotron radiation is many times brighter and thus allows one to carry out far more detailed structural analyses. However, sources of synchrotron radiation are relatively thin on the ground, as its generation requires the acceleration of electrons to ultrarelativistic velocities (speeds approaching that of light), and construction of particle accelerators of the necessary size is immensely costly.

To harness the advantages of synchrotron radiation for general use in medicine, physicists at LMU, the MPQ and the TUM have been exploring the application of high-performance lasers to the production of X-rays. In their set-up, hydrogen atoms are irradiated with extremely intense pulses of laser light. The highly energetic optical fields strip the electrons from the atoms and part of the ionized plasma electrons are accelerated.

Simultaneously, these electrons oscillate in the plasma fields, which causes them to emit the desired synchrotron radiation, i.e. high-intensity X-rays. Moreover, this whole process takes place over a path-length of less than 15 mm. So laser-based X-ray sources have a far smaller footprint, and are much less expensive to build, than conventional synchrotrons, but produce X-radiation of comparable quality.

In the early trials carried out at the Max Planck Institute in 2015, the research team was able to derive the three-dimensional structure of an insect from two-dimensional projection images taken from different angles. For the latest experiments, performed in the Laboratory for Extreme Photonics, Prof. Stefan Karsch and his colleagues have boosted the pulse rate, photon yield and photon energies, and this time they chose to image a sample of human bone. Thanks to an improved processing algorithm, developed by Prof. Franz Pfeiffer and his group at the TUM, the team needed to collect significantly less data than before. Accordingly, the complete tomogram could be obtained within less than three minutes.

The project was conceived and initiated in the Munich-Centre for Advanced Photonics (a Cluster of Excellence) and is undergoing further development at the Center for Advanced Laser Applications (CALA) in Garching. The laser systems available at CALA are expected to significantly enhance the efficiency of the source and the quality of the radiation generated, thus making this new form of tomography available for clinical applications for the first time. Thorsten Naeser

Figure caption:
The further development of ATLAS, the high-performance laser in LMU’s Laboratory for Extreme Photonics, paved the way for the tomographic reconstruction of the three-dimensional fine structure of a bone sample within a few minutes. (Photo: Thorsten Naeser)

Original publications:

A.Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H. Ding, S. Schindler, F. Pfeiffer, and S. Karsch
Quick X-ray microtomography using a laser-driven betatron source
Optica Vol. 5, Issue 2, pp. 199-203 (2018) doi.org/10.1364/OPTICA.5.000199

J.Götzfried, A.Döpp, M.Gilljohann, H.Ding, S.Schindler, J.Wenz, L.Hehn, F.Pfeiffer, S.Karsch
Research towards high-repetition rate laser-driven X-ray sources for imaging applications
Nuclear Instruments and Methods A (2018), doi.org/10.1016/j.nima.2018.02.110

Contacts:

Dr. Andreas Döpp
Ludwig-Maximilians-Universität München
Chair of Experimental Physics-Laser Physics
85748 Garching, Germany
Phone: +49 (0)89 289 - 14170
E-mail: a.doepp@physik.uni-muenchen.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>