Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory breakthrough may lead to improved X-ray spectrometers

08.06.2016

Swiss researchers improve an interferometry technique by utilizing the interference fringe, an aspect previously viewed as a nuisance

Researchers at the Paul Scherrer Institute's Swiss Light Source in Villigen, Switzerland, have developed a new design for X-ray spectrometers that eschews a commonly utilized component to lowers overall production costs and increase the efficiency of x-ray flux, which may lead to faster acquisition times for sample imaging and increased efficiency for the system. This is essential for biological samples which may be damaged by continued x-ray exposure.


Directly resolved micro-meter interference fringes help reveal subtle phase contrast in the sample.

Credit: Kagias/PSI

X-ray grating interferometry is an extremely useful tool for investigating the compositions of unknown biological samples. In the traditional setup, a source of interference called the interference fringe necessitated the use of highly-sensitive detectors. In response to this, a method known as Talbot-Lau interferometry was developed and widely adopted. It renders the detector mostly inessential by decoupling the interferometer's sensitivity from the detector's resolution. However, a number of manufacturing costs and mechanical complexities ultimately complicate its implementation.

To remedy this, researchers at the Institute for Biomedical Engineering in Zurich and the Swiss Light Source (SLS) have developed an interferometer which does not use the traditional component, called a G2 grating, and instead directly exploits the fringe interference for higher resolution.

"We can perform differential phase contrast imaging with high sensitivity without the need for a G2 grating or a detector with small pixel size in order to resolve the fringe," said Matias Kagias. Kagias is a PhD student in the laboratory of Marco Stampanoni, the paper's primary investigator. Kagias and his colleagues present their work this week in Applied Physics Letters, from AIP Publishing.

X-ray interferometry works by firing X-rays at a downstream detector. When a biomedical sample or a piece of material is placed in the beam's path, the object modifies the observed interference pattern via absorption, refraction, and small-angle scattering. Once these signals are picked up by the detector, technicians can determine the sample's properties using an algorithm.

Along the way - either before or after the sample - the beams pass through a phase grating, which divides the beam into different diffraction orders based on their wavelength. The difference between these diffraction orders introduces an interference fringe - a problematic source of interference which needs to be in the micrometer range in order to achieve high sensitivity for the detector. Unfortunately, such fringes are challenging to record directly over a large field of view.

To work around this, the Talbot-Lau interferometry method utilizes an absorption grating, G2, placed right before the detector, and senses the distortions by a procedure known as phase stepping. Here, the absorption grating is scanned step by step for one or more periods of the interference fringe, each time recording an image which results in an intensity curve at each pixel. This allows the interference fringe to be sensed indirectly, while obtaining absorption, differential phase and small-angle scattering signals for each pixel.

However, this ultimately causes the system to be less efficient for each dose of x-rays due to photon absorption by G2. The required area and aspect ratio of the gratings, which are millimeter-sized, further complicate matters by driving up overall production costs.

The researchers' experimental setup consisted of an X-ray source, a single phase grating, and a GOTTHARD microstrip detector developed by the SLS detector group - a significantly simplified version of the traditional Talbot-Lau interferometer. The GOTTHARD detector uses a direct conversion sensor, in which X-ray photons are absorbed , the charge generated from one absorption event is collected by more than one channel for small channel sizes - charge sharing.

"The key point to resolving the fringe is to acquire single photon events and then interpolate their positions using the charge sharing effect, which is usually considered as a negative effect in photon counting detectors," Kagias said. By interpolating the position of many photons, a high resolution image can then be acquired.

When the researchers implemented the appropriate algorithm to analyze this recorded fringe, they found that the fringes of a few micrometers could be acquired successfully while still retrieving the differential phase signal.

According to Kagias, this ultimately increases the interferometer's flux efficiency by a factor of 2 compared to a standard Talbot-Lau interferometer. This may lead to faster acquisition times and a dose reduction, which is essential given X-rays' potential to damage biological structures.

Future work for Kagias and his colleagues involves moving to large area pixel detectors, and improving the resolution and sensitivity of their setup.

###

The article, "Single Shot X-Ray Phase Contrast Imaging Using a Direct Conversion Microstrip Detector with Single Photon Sensitivity" is authored by M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni. It will appear in the journal Applied Physics Letters on June 7, 2016 (DOI: 10.1063/1.4948584). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/108/23/10.1063/1.4948584

About the journal:

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.

http://apl.aip.org

Media Contact

John Arnst
jarnst@aip.org
301-209-3096

 @jasonbardi

http://www.aip.org 

John Arnst | EurekAlert!

Further reports about: Applied Physics G2 X-ray biological samples detector spectrometers

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>