Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kepler-444 has ancient planetary system

27.01.2015

Space telescope discovers five exoplanets orbiting a star in the constellation of Cygnus

A group of scientists led by the University of Birmingham has discovered the oldest known solar system containing Earth-sized planets. Five of these comparatively small planets orbit the star Kepler-444, whose birth dates back about 11.2 billion years.


Planetary system at a remote sun: five Earth-sized planets orbit the star Kepler-444 in the constellation Cygnus. With an age of 11.2 billion years, this is the oldest known system of Earth-sized planets.

© Tiago Campante / Peter Devine

The new findings are based on data from NASA’s Kepler Space Observatory. They suggest that habitable worlds might have existed earlier in the Universe than previously thought. Researchers from the Max Planck Institute for Solar System Research and the University of Göttingen in Germany contributed to this groundbreaking study.

The planetary system around the star Kepler-444 appears like a distant version of our own inner solar system: Even though not four, but five small planets orbit the host star, their sizes all lie between those of Mercury and Venus.

The exoplanets orbit Kepler-444 in less than ten days or, equivalently, at less than one-tenth Earth’s distance from the Sun. The age of the system is a surprise: with 11.2 billion years, it is almost two and a half times as old as our solar system. So far, no other system of comparable age is known to host Earth-sized planets.

The team carried out the research using asteroseismology: with the help of the Kepler Space Observatory the researchers listened to the natural resonances of the host star which are caused by sound waves trapped within it. “These oscillations lead to miniscule variations in its brightness which allow us to measure its diameter, mass, and age”, says Saskia Hekker from the Max Planck Institute for Solar System Research.

The planets were detected from the dimming that occurs when they passed in front of the star. This fractional fading in the intensity of the light received from the star enables scientists to accurately measure the sizes of the planets relative to the size of the star.

The Kepler Space Observatory has been searching for exoplanets since 2009. Over a period of four years it repeatedly turned its gaze to star Kepler-444. “Long, uninterrupted observations are necessary to observe the weak pulsations. Only with the exquisite, high quality data from the Kepler mission has this been possible”, explains Dr. Timothy White from the University of Göttingen.

"There are far-reaching implications from this discovery”, says Tiago Campante from the University of Birmingham, who led the research. It proves that Earth-sized planets have formed throughout most of the Universe’s 13.8-billion-year history. Hekker clarifies that “We therefore think it is possible that worlds which could support life may have existed even in this early phase of the Universe’s evolution.

Since the beginning of this year, Saskia Hekker heads the new Max Planck Research Group “Stellar Ages and Galactic Evolution” at the MPS. After receiving her doctorate in 2007 at the University of Leiden in the Netherlands, she did research at the Royal Observatory of Belgium and at the University of Birmingham in England. In 2011 she received the prestigious Veni Fellowship of the Netherlands Organization for Scientific Research to continue her work at the Astronomical Institute "Anton Pannenkoek" of the University of Amsterdam. Since 2013 Hekker’s scientific home is the MPS in Göttingen where she was awarded a Starting Grant of the European Research Council.

Contact

Dr. Birgit Krummheuer
Press Officer

Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-462

Fax: +49 551 384979-240

Email: Krummheuer@mps.mpg.de


Dr. Saskia Hekker
Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-257

Email: Hekker@mps.mpg.de


Dr. Timothy White
Institut für Astrophysik, Universität Göttingen
Phone: +49 551 3913-811

Email: twhite@astro.physik.uni-goettingen.de


Original publication
T.L. Campante et al.

An ancient extrasolar system with five sub-Earth-size planets

Astrophysical Journal, 27 January 2015

Dr. Birgit Krummheuer | Max Planck Institute for Solar System Research, Göttingen
Further information:
http://www.mpg.de/8916263/exoplanets-kepler-444

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>