Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kepler-444 has ancient planetary system

27.01.2015

Space telescope discovers five exoplanets orbiting a star in the constellation of Cygnus

A group of scientists led by the University of Birmingham has discovered the oldest known solar system containing Earth-sized planets. Five of these comparatively small planets orbit the star Kepler-444, whose birth dates back about 11.2 billion years.


Planetary system at a remote sun: five Earth-sized planets orbit the star Kepler-444 in the constellation Cygnus. With an age of 11.2 billion years, this is the oldest known system of Earth-sized planets.

© Tiago Campante / Peter Devine

The new findings are based on data from NASA’s Kepler Space Observatory. They suggest that habitable worlds might have existed earlier in the Universe than previously thought. Researchers from the Max Planck Institute for Solar System Research and the University of Göttingen in Germany contributed to this groundbreaking study.

The planetary system around the star Kepler-444 appears like a distant version of our own inner solar system: Even though not four, but five small planets orbit the host star, their sizes all lie between those of Mercury and Venus.

The exoplanets orbit Kepler-444 in less than ten days or, equivalently, at less than one-tenth Earth’s distance from the Sun. The age of the system is a surprise: with 11.2 billion years, it is almost two and a half times as old as our solar system. So far, no other system of comparable age is known to host Earth-sized planets.

The team carried out the research using asteroseismology: with the help of the Kepler Space Observatory the researchers listened to the natural resonances of the host star which are caused by sound waves trapped within it. “These oscillations lead to miniscule variations in its brightness which allow us to measure its diameter, mass, and age”, says Saskia Hekker from the Max Planck Institute for Solar System Research.

The planets were detected from the dimming that occurs when they passed in front of the star. This fractional fading in the intensity of the light received from the star enables scientists to accurately measure the sizes of the planets relative to the size of the star.

The Kepler Space Observatory has been searching for exoplanets since 2009. Over a period of four years it repeatedly turned its gaze to star Kepler-444. “Long, uninterrupted observations are necessary to observe the weak pulsations. Only with the exquisite, high quality data from the Kepler mission has this been possible”, explains Dr. Timothy White from the University of Göttingen.

"There are far-reaching implications from this discovery”, says Tiago Campante from the University of Birmingham, who led the research. It proves that Earth-sized planets have formed throughout most of the Universe’s 13.8-billion-year history. Hekker clarifies that “We therefore think it is possible that worlds which could support life may have existed even in this early phase of the Universe’s evolution.

Since the beginning of this year, Saskia Hekker heads the new Max Planck Research Group “Stellar Ages and Galactic Evolution” at the MPS. After receiving her doctorate in 2007 at the University of Leiden in the Netherlands, she did research at the Royal Observatory of Belgium and at the University of Birmingham in England. In 2011 she received the prestigious Veni Fellowship of the Netherlands Organization for Scientific Research to continue her work at the Astronomical Institute "Anton Pannenkoek" of the University of Amsterdam. Since 2013 Hekker’s scientific home is the MPS in Göttingen where she was awarded a Starting Grant of the European Research Council.

Contact

Dr. Birgit Krummheuer
Press Officer

Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-462

Fax: +49 551 384979-240

Email: Krummheuer@mps.mpg.de


Dr. Saskia Hekker
Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-257

Email: Hekker@mps.mpg.de


Dr. Timothy White
Institut für Astrophysik, Universität Göttingen
Phone: +49 551 3913-811

Email: twhite@astro.physik.uni-goettingen.de


Original publication
T.L. Campante et al.

An ancient extrasolar system with five sub-Earth-size planets

Astrophysical Journal, 27 January 2015

Dr. Birgit Krummheuer | Max Planck Institute for Solar System Research, Göttingen
Further information:
http://www.mpg.de/8916263/exoplanets-kepler-444

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>