Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jena Laser System Sets a Further World Record

19.02.2016

Physicists of University of Jena Triple Pulse Energy of POLARIS Laser

POLARIS is the world's most powerful fully diode-pumped laser system and with it, the University of Jena possesses a petawatt-class laser, which produces the presently highest-performing laser pulses.


POLARIS at the University of Jena is the world's most powerful fully diode-pumped laser system. Now physicists succeeded to improve POLARIS' performance significantly.

Photo: Jan-Peter Kasper/FSU

A team of physicists under the leadership of Prof. Dr Malte Kaluza at the Institute of Optics and Quantum Electronics has now succeeded to once again improve POLARIS' performance significantly. For the first time, the laser has produced pulses delivering an energy of more than 50 Joule, which is more than three times as high as before.

50 Joule is the amount of energy needed to lift an object weighing 500 g approximately 10 m off the ground; to raise the temperature of a glass of water by only one degree, however, 17 times as much energy would be required. For a high-performance laser system like POLARIS, 50 Joule therefore seems rather meagre.

„But our laser system delivers this amount of energy in a very short time interval,“ explains Prof. Kaluza. The laser pulses have a duration of 120 femtoseconds only. In this unimaginably brief moment – a femtosecond is one thousand-million-millionth of a second –, the laser reaches a peak power of several hundred terawatts (TW). This is many times higher than all the electrical power produced worldwide.

This increase in the laser system’s performance is the result of several months of development. „The basic architecture and set-up of the laser have not changed,“ underlines Prof. Kaluza, „but we succeeded in changing and improving many small details decisively.“

The recent results and achievements were also made possible through a long-term cooperation with the local optics industry – in particular with the Jenoptik AG, with Lastronics GmbH, with Hellma Materials GmbH, and with Layertec GmbH –, who have provided some of the core components of the laser system. For example, the last and largest power amplifier of POLARIS now uses ytterbium-doped calcium fluoride crystals.

And also the optical coating of the materials put under enormous stress by the laser radiation has been further optimized. „All these small changes together now allow us to reach a considerably higher laser energy than before,“ explains Kaluza. But the laser physicist also suggests that the 54.16 Joule reached now are far from being the finish line.

As the next stage in the development, Kaluza, who also is the holder of the chair of experimental physics and relativistic laser physics, now plans to shorten the duration of pulses in the POLARIS system even further, the goal being to reduce the duration to no more than 100 femtoseconds. The steady reduction of the duration is, however, not a goal in itself.

„We are not looking to always set new records,“ explains Kaluza. On the contrary, the objective is to make POLARIS available for specific uses. First and foremost, the laser is meant to be used as a tool for particle acceleration. „We have already conducted some first experiments in this field with lower pulse energy and longer laser pulses. Now we are excited to see how the particle energy will scale with the much higher laser energy and concurring shorter pulse duration.“

Intense and highly energetic ion radiation can, for example, be used in tumour treatment. So far, the generation of these highly energetic particles required tremendous technical efforts in very large particle accelerators.

„With the amount of energy we are now able to generate, we can offer laser systems like POLARIS for particle irradiation, which are comparatively ‘easy to handle’ and manageable. We are now curious to see to what particle energy we can now make it with the new laser pulses,“ says Prof. Kaluza.

Information on POLARIS:
The name POLARIS stands for „Petawatt Optical Laser Amplifier for Radiation Intensive Experiments.“ The project in the framework of which POLARIS was developed was launched at the University of Jena in 1999. The laser has been continuously developed ever since and currently is the world’s only fully diode-pumped laser system generating pulses with a peak power of more than 200 TW and can thus be used for high-intensity experiments. More information at: https://www.hi-jena.de/en/helmholtz_institute_jena/experimental_facilities/local...

Contact:
Prof. Dr Malte Christoph Kaluza
Institute of Optics and Quantum Electronics of the University of Jena
Max-Wien-Platz 1, 07743 Jena, Germany
Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
Phone: +49 (0) 3641 / 947280
E-mail: malte.kaluza[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>