Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jena Laser System Sets a Further World Record


Physicists of University of Jena Triple Pulse Energy of POLARIS Laser

POLARIS is the world's most powerful fully diode-pumped laser system and with it, the University of Jena possesses a petawatt-class laser, which produces the presently highest-performing laser pulses.

POLARIS at the University of Jena is the world's most powerful fully diode-pumped laser system. Now physicists succeeded to improve POLARIS' performance significantly.

Photo: Jan-Peter Kasper/FSU

A team of physicists under the leadership of Prof. Dr Malte Kaluza at the Institute of Optics and Quantum Electronics has now succeeded to once again improve POLARIS' performance significantly. For the first time, the laser has produced pulses delivering an energy of more than 50 Joule, which is more than three times as high as before.

50 Joule is the amount of energy needed to lift an object weighing 500 g approximately 10 m off the ground; to raise the temperature of a glass of water by only one degree, however, 17 times as much energy would be required. For a high-performance laser system like POLARIS, 50 Joule therefore seems rather meagre.

„But our laser system delivers this amount of energy in a very short time interval,“ explains Prof. Kaluza. The laser pulses have a duration of 120 femtoseconds only. In this unimaginably brief moment – a femtosecond is one thousand-million-millionth of a second –, the laser reaches a peak power of several hundred terawatts (TW). This is many times higher than all the electrical power produced worldwide.

This increase in the laser system’s performance is the result of several months of development. „The basic architecture and set-up of the laser have not changed,“ underlines Prof. Kaluza, „but we succeeded in changing and improving many small details decisively.“

The recent results and achievements were also made possible through a long-term cooperation with the local optics industry – in particular with the Jenoptik AG, with Lastronics GmbH, with Hellma Materials GmbH, and with Layertec GmbH –, who have provided some of the core components of the laser system. For example, the last and largest power amplifier of POLARIS now uses ytterbium-doped calcium fluoride crystals.

And also the optical coating of the materials put under enormous stress by the laser radiation has been further optimized. „All these small changes together now allow us to reach a considerably higher laser energy than before,“ explains Kaluza. But the laser physicist also suggests that the 54.16 Joule reached now are far from being the finish line.

As the next stage in the development, Kaluza, who also is the holder of the chair of experimental physics and relativistic laser physics, now plans to shorten the duration of pulses in the POLARIS system even further, the goal being to reduce the duration to no more than 100 femtoseconds. The steady reduction of the duration is, however, not a goal in itself.

„We are not looking to always set new records,“ explains Kaluza. On the contrary, the objective is to make POLARIS available for specific uses. First and foremost, the laser is meant to be used as a tool for particle acceleration. „We have already conducted some first experiments in this field with lower pulse energy and longer laser pulses. Now we are excited to see how the particle energy will scale with the much higher laser energy and concurring shorter pulse duration.“

Intense and highly energetic ion radiation can, for example, be used in tumour treatment. So far, the generation of these highly energetic particles required tremendous technical efforts in very large particle accelerators.

„With the amount of energy we are now able to generate, we can offer laser systems like POLARIS for particle irradiation, which are comparatively ‘easy to handle’ and manageable. We are now curious to see to what particle energy we can now make it with the new laser pulses,“ says Prof. Kaluza.

Information on POLARIS:
The name POLARIS stands for „Petawatt Optical Laser Amplifier for Radiation Intensive Experiments.“ The project in the framework of which POLARIS was developed was launched at the University of Jena in 1999. The laser has been continuously developed ever since and currently is the world’s only fully diode-pumped laser system generating pulses with a peak power of more than 200 TW and can thus be used for high-intensity experiments. More information at:

Prof. Dr Malte Christoph Kaluza
Institute of Optics and Quantum Electronics of the University of Jena
Max-Wien-Platz 1, 07743 Jena, Germany
Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
Phone: +49 (0) 3641 / 947280
E-mail: malte.kaluza[at]

Weitere Informationen:

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>