Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jena Laser System Sets a Further World Record

19.02.2016

Physicists of University of Jena Triple Pulse Energy of POLARIS Laser

POLARIS is the world's most powerful fully diode-pumped laser system and with it, the University of Jena possesses a petawatt-class laser, which produces the presently highest-performing laser pulses.


POLARIS at the University of Jena is the world's most powerful fully diode-pumped laser system. Now physicists succeeded to improve POLARIS' performance significantly.

Photo: Jan-Peter Kasper/FSU

A team of physicists under the leadership of Prof. Dr Malte Kaluza at the Institute of Optics and Quantum Electronics has now succeeded to once again improve POLARIS' performance significantly. For the first time, the laser has produced pulses delivering an energy of more than 50 Joule, which is more than three times as high as before.

50 Joule is the amount of energy needed to lift an object weighing 500 g approximately 10 m off the ground; to raise the temperature of a glass of water by only one degree, however, 17 times as much energy would be required. For a high-performance laser system like POLARIS, 50 Joule therefore seems rather meagre.

„But our laser system delivers this amount of energy in a very short time interval,“ explains Prof. Kaluza. The laser pulses have a duration of 120 femtoseconds only. In this unimaginably brief moment – a femtosecond is one thousand-million-millionth of a second –, the laser reaches a peak power of several hundred terawatts (TW). This is many times higher than all the electrical power produced worldwide.

This increase in the laser system’s performance is the result of several months of development. „The basic architecture and set-up of the laser have not changed,“ underlines Prof. Kaluza, „but we succeeded in changing and improving many small details decisively.“

The recent results and achievements were also made possible through a long-term cooperation with the local optics industry – in particular with the Jenoptik AG, with Lastronics GmbH, with Hellma Materials GmbH, and with Layertec GmbH –, who have provided some of the core components of the laser system. For example, the last and largest power amplifier of POLARIS now uses ytterbium-doped calcium fluoride crystals.

And also the optical coating of the materials put under enormous stress by the laser radiation has been further optimized. „All these small changes together now allow us to reach a considerably higher laser energy than before,“ explains Kaluza. But the laser physicist also suggests that the 54.16 Joule reached now are far from being the finish line.

As the next stage in the development, Kaluza, who also is the holder of the chair of experimental physics and relativistic laser physics, now plans to shorten the duration of pulses in the POLARIS system even further, the goal being to reduce the duration to no more than 100 femtoseconds. The steady reduction of the duration is, however, not a goal in itself.

„We are not looking to always set new records,“ explains Kaluza. On the contrary, the objective is to make POLARIS available for specific uses. First and foremost, the laser is meant to be used as a tool for particle acceleration. „We have already conducted some first experiments in this field with lower pulse energy and longer laser pulses. Now we are excited to see how the particle energy will scale with the much higher laser energy and concurring shorter pulse duration.“

Intense and highly energetic ion radiation can, for example, be used in tumour treatment. So far, the generation of these highly energetic particles required tremendous technical efforts in very large particle accelerators.

„With the amount of energy we are now able to generate, we can offer laser systems like POLARIS for particle irradiation, which are comparatively ‘easy to handle’ and manageable. We are now curious to see to what particle energy we can now make it with the new laser pulses,“ says Prof. Kaluza.

Information on POLARIS:
The name POLARIS stands for „Petawatt Optical Laser Amplifier for Radiation Intensive Experiments.“ The project in the framework of which POLARIS was developed was launched at the University of Jena in 1999. The laser has been continuously developed ever since and currently is the world’s only fully diode-pumped laser system generating pulses with a peak power of more than 200 TW and can thus be used for high-intensity experiments. More information at: https://www.hi-jena.de/en/helmholtz_institute_jena/experimental_facilities/local...

Contact:
Prof. Dr Malte Christoph Kaluza
Institute of Optics and Quantum Electronics of the University of Jena
Max-Wien-Platz 1, 07743 Jena, Germany
Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
Phone: +49 (0) 3641 / 947280
E-mail: malte.kaluza[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>