Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's filamentary: How galaxies evolve in the cosmic web

21.11.2014

UC Riverside-led team proposes that filaments in the cosmic web played a critical role in the distant universe

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of California, Riverside, proposes some answers.


Galaxies are distributed along a cosmic web in the universe. "Mpc/h" is a unit of galactic distance (1 Mpc/h is more than 3.2 million light-years).

Credit: Volker Springel, Virgo Consortium

The researchers highlight the role of the "cosmic web" - a large-scale web-like structure comprised of galaxies - on the evolution of galaxies that took place in the distant universe, a few billion years after the Big Bang. In their paper, published Nov. 20 in the Astrophysical Journal, they present observations showing that thread-like "filaments" in the cosmic web played an important role in this evolution.

"We think the cosmic web, dominated by dark matter, formed very early in the history of the universe, starting with small initial fluctuations in the primordial universe," said Behnam Darvish, a Ph.D. graduate student in the Department of Physics and Astronomy at UC Riverside, who led the research project and is the first author on the paper. "Such a 'skeletal' universe must have played, in principle, a role in galaxy formation and evolution, but this was incredibly hard to study and understand until recently."

The distribution of galaxies and matter in the universe is non-random. Galaxies are organized, even today, in a manner resembling an enormous network - the cosmic web. This web has dense regions made up of galaxy clusters and groups, sparsely populated regions devoid of galaxies, as well as the filaments that link overdense regions.

"The filaments are like bridges connecting the denser regions in the cosmic web," Darvish explained. "Imagine threads woven into the web."

Videos showing structures in the cosmic web:
http://www.mpa-garching.mpg.de/galform/data_vis/millennium_sim_1024x768.avi  [Credit: Springel et al. (Virgo Consortium)]
http://vimeo.com/36095013  [Credit: Miguel Aragon-Calvo]
http://www.mpa-garching.mpg.de/galform/data_vis/g696_mpeg4.avi  [Credit: Klaus Dolag]
http://www.mpa-garching.mpg.de/galform/data_vis/g696_fast_mpeg4.avi  [Credit: Klaus Dolag]

It is well known in astronomy that galaxies residing in less dense regions have higher probability of actively forming stars (much like our Milky Way), while galaxies in denser regions form stars at a much lower rate.

"But the role of intermediate environments and, in particular, the role of filaments and the cosmic web in the early universe remained, until very recently, a mystery," said coauthor Bahram Mobasher, a professor of physics and astronomy at UCR and Darvish's adviser.

What greatly assisted the researchers is a giant section of the cosmic web first revealed in two big cosmological surveys (COSMOS and HiZELS). They proceeded to explore data also from several telescopes (Hubble, VLT, UKIRT and Subaru). They then applied a new computational method to identify the filaments, which, in turn, helped them study the role of the cosmic web.

They found that galaxies residing in the cosmic web/filaments have a much higher chance of actively forming stars. In other words, in the distant universe, galaxy evolution seems to have been accelerated in the filaments.

"It is possible that such filaments 'pre-process' galaxies, accelerating their evolution while also funneling them towards clusters, where they are fully processed by the dense environment of clusters and likely end up as dead galaxies," Darvish said. "Our results also show that such enhancement/acceleration is likely due to galaxy-galaxy interactions in the filaments."

Because of the complexities involved in quantifying the cosmic web, astronomers usually limit the study of the cosmic web to numerical simulations and observations in our local universe. However, in this new study, the researchers focused their work on the distant universe - when the universe was approximately half its present age.

"We were surprised by the crucial role the filaments play in galaxy formation and evolution," Mobasher said. "Star formation is enhanced in them. The filaments likely increase the chance of gravitational interaction between galaxies, which, in turn, results in this star-formation enhancement. There is evidence in our local universe that this process in filaments also continues to occur at the present time."

Darvish and Mobasher were joined in this research by L. V. Sales at UCR; David Sobral at the Universidade de Lisboa, Portugal; N. Z. Scoville at the California Institute of Technology; P. Best at the Royal Observatory of Ediburgh, United Kingdom; and I. Smail at Durham University, United Kingdom.

Next, the team plans to extend this study to other epochs in the age of the universe to study the role of the cosmic web/filaments in galaxy formation and evolution across cosmic time.

"This will be a fundamental piece of the puzzle in order to understand how galaxies form and evolve as a whole," Sobral said.

The UCR researchers were supported in the study by a grant to Mobasher from NASA through the Space Telescope Science Institute.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!

Further reports about: Galaxies Milky Way UCR astronomy dense filaments forming stars galaxy formation observations turn

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>