Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State scientists develop quick-destructing battery to power 'transient' devices

05.08.2016

Self-destructing electronic devices could keep military secrets out of enemy hands. Or they could save patients the pain of removing a medical device. Or, they could allow environmental sensors to wash away in the rain.

Making such devices possible is the goal of a relatively new field of study called "transient electronics." These transient devices could perform a variety of functions - until exposure to light, heat or liquid triggers their destruction.


Iowa State scientists have developed a working battery that dissolves and disperses in water.

Credit: Scientific illustration by Ashley Christopherson

Reza Montazami, an Iowa State University assistant professor of mechanical engineering and an associate of the U.S. Department of Energy's Ames Laboratory, has been working on transient technology for years.

The latest development from his lab is a self-destructing, lithium-ion battery capable of delivering 2.5 volts and dissolving or dissipating in 30 minutes when dropped in water. The battery can power a desktop calculator for about 15 minutes.

Montazami said it's the first transient battery to demonstrate the power, stability and shelf life for practical use.

Montazami and his team recently published their discovery in the Journal of Polymer Science, Part B: Polymer Physics.

Study co-authors are Nastaran Hashemi, an assistant professor of mechanical engineering; Simge Çinar, a postdoctoral research associate; Yuanfen Chen and Reihaneh Jamshidi, graduate students; Kathryn White, a Department of Energy-Ames Laboratory intern; and Emma Gallegos, an undergraduate student.

Development of the transient battery was supported by funding from Iowa State's Presidential Initiative for Interdisciplinary Research and the department of mechanical engineering.

"Unlike conventional electronics that are designed to last for extensive periods of time, a key and unique attribute of transient electronics is to operate over a typically short and well-defined period, and undergo fast and, ideally, complete self-deconstruction and vanish when transiency is triggered," the scientists wrote in their paper.

And what about a transient device that depends on a standard battery?

"Any device without a transient power source isn't really transient," Montazami said. "This is a battery with all the working components. It's much more complex than our previous work with transient electronics."

Montazami's previous, proof-of-concept project involved electronics printed on a single layer of a degradable polymer composite. The transient battery is made up of eight layers, including an anode, a cathode and the electrolyte separator, all wrapped up in two layers of a polyvinyl alcohol-based polymer.

The battery itself is tiny - about 1 millimeter thick, 5 millimeters long and 6 millimeters wide. Montazami said the battery components, structure and electrochemical reactions are all very close to commercially developed battery technology.

But, when you drop it in water, the polymer casing swells, breaks apart the electrodes and dissolves away. Montazami is quick to say the battery doesn't completely disappear. The battery contains nanoparticles that don't degrade, but they do disperse as the battery's casing breaks the electrodes apart.

He calls that "physical-chemical hybrid transiency."

And what about applications that require a longer-lasting charge? Larger batteries with higher capacities could provide more power, but they also take longer to self-destruct, according to the scientists' paper. The paper suggests applications requiring higher power levels could be connected to several smaller batteries.

Even though batteries are tried-and-tested technology, Montazami said the transient battery project presented three major challenges for his research group.

First, he said the battery had to produce voltage similar to commercial batteries because many devices won't operate if voltage is low or unsteady. Second, the batteries require multiple layers and a complex structure. And third, fabricating the batteries was difficult and took repeated attempts.

And what kept the group working through all that?

"The materials science part of this," Montazami said. "This is a challenging materials problem, and there are not many groups working on similar projects."

Media Contact

Reza Montazami
reza@iastate.edu
515-294-8733

 @IowaStateUNews

http://www.iastate.edu 

Reza Montazami | EurekAlert!

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>