Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State scientists develop quick-destructing battery to power 'transient' devices

05.08.2016

Self-destructing electronic devices could keep military secrets out of enemy hands. Or they could save patients the pain of removing a medical device. Or, they could allow environmental sensors to wash away in the rain.

Making such devices possible is the goal of a relatively new field of study called "transient electronics." These transient devices could perform a variety of functions - until exposure to light, heat or liquid triggers their destruction.


Iowa State scientists have developed a working battery that dissolves and disperses in water.

Credit: Scientific illustration by Ashley Christopherson

Reza Montazami, an Iowa State University assistant professor of mechanical engineering and an associate of the U.S. Department of Energy's Ames Laboratory, has been working on transient technology for years.

The latest development from his lab is a self-destructing, lithium-ion battery capable of delivering 2.5 volts and dissolving or dissipating in 30 minutes when dropped in water. The battery can power a desktop calculator for about 15 minutes.

Montazami said it's the first transient battery to demonstrate the power, stability and shelf life for practical use.

Montazami and his team recently published their discovery in the Journal of Polymer Science, Part B: Polymer Physics.

Study co-authors are Nastaran Hashemi, an assistant professor of mechanical engineering; Simge Çinar, a postdoctoral research associate; Yuanfen Chen and Reihaneh Jamshidi, graduate students; Kathryn White, a Department of Energy-Ames Laboratory intern; and Emma Gallegos, an undergraduate student.

Development of the transient battery was supported by funding from Iowa State's Presidential Initiative for Interdisciplinary Research and the department of mechanical engineering.

"Unlike conventional electronics that are designed to last for extensive periods of time, a key and unique attribute of transient electronics is to operate over a typically short and well-defined period, and undergo fast and, ideally, complete self-deconstruction and vanish when transiency is triggered," the scientists wrote in their paper.

And what about a transient device that depends on a standard battery?

"Any device without a transient power source isn't really transient," Montazami said. "This is a battery with all the working components. It's much more complex than our previous work with transient electronics."

Montazami's previous, proof-of-concept project involved electronics printed on a single layer of a degradable polymer composite. The transient battery is made up of eight layers, including an anode, a cathode and the electrolyte separator, all wrapped up in two layers of a polyvinyl alcohol-based polymer.

The battery itself is tiny - about 1 millimeter thick, 5 millimeters long and 6 millimeters wide. Montazami said the battery components, structure and electrochemical reactions are all very close to commercially developed battery technology.

But, when you drop it in water, the polymer casing swells, breaks apart the electrodes and dissolves away. Montazami is quick to say the battery doesn't completely disappear. The battery contains nanoparticles that don't degrade, but they do disperse as the battery's casing breaks the electrodes apart.

He calls that "physical-chemical hybrid transiency."

And what about applications that require a longer-lasting charge? Larger batteries with higher capacities could provide more power, but they also take longer to self-destruct, according to the scientists' paper. The paper suggests applications requiring higher power levels could be connected to several smaller batteries.

Even though batteries are tried-and-tested technology, Montazami said the transient battery project presented three major challenges for his research group.

First, he said the battery had to produce voltage similar to commercial batteries because many devices won't operate if voltage is low or unsteady. Second, the batteries require multiple layers and a complex structure. And third, fabricating the batteries was difficult and took repeated attempts.

And what kept the group working through all that?

"The materials science part of this," Montazami said. "This is a challenging materials problem, and there are not many groups working on similar projects."

Media Contact

Reza Montazami
reza@iastate.edu
515-294-8733

 @IowaStateUNews

http://www.iastate.edu 

Reza Montazami | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>