Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Ion Trap with Optical Fiber Could Link Atoms and Light in Quantum Networks

08.07.2010
Physicists at the National Institute of Standards and Technology (NIST) have demonstrated an ion trap with a built-in optical fiber that collects light emitted by single ions (electrically charged atoms), allowing quantum information stored in the ions to be measured. The advance could simplify quantum computer design and serve as a step toward swapping information between matter and light in future quantum networks.

Described in a forthcoming issue of Physical Review Letters,* the new device is a 1-millimeter-square ion trap with a built-in optical fiber. The authors use ions as quantum bits (qubits) to store information in experimental quantum computing, which may someday solve certain problems that are intractable today. An ion can be adjustably positioned 80 to 100 micrometers from an optical fiber, which detects the ion's fluorescence signals indicating the qubit's information content.

"The design is helpful because of the tight coupling between the ion and the fiber, and also because it's small, so you can get a lot of fibers on a chip," says first author Aaron VanDevender, a NIST postdoctoral researcher.

NIST scientists demonstrated the new device using magnesium ions. Light emitted by an ion passes through a hole in an electrode and is collected in the fiber below the electrode surface (see image). By contrast, conventional ion traps use large external lenses typically located 5 centimeters away from the ions—about 500 times farther than the fiber—to collect the fluorescence light. Optical fibers may handle large numbers of ions more easily than the bulky optical systems, because multiple fibers may eventually be attached to a single ion trap.

The fiber method currently captures less light than the lens system but is adequate for detecting quantum information because ions are extremely bright, producing millions of photons (individual particles of light) per second, VanDevender says. The authors expect to boost efficiency by shaping the fiber tip and using anti-reflection coating on surfaces. The new trap design is intended as a prototype for eventually pairing single ions with single photons, to make an interface enabling matter qubits to swap information with photon qubits in a quantum computing and communications network. Photons are used as qubits in quantum communications, the most secure method known for ensuring the privacy of a communications channel. In a quantum network, the information encoded in the "spins" of individual ions could be transferred to, for example, electric field orientations of individual photons for transport to other processing regions of the network.

The research was supported by the Defense Advanced Research Projects Agency, National Security Agency, Office of Naval Research, Intelligence Advanced Research Projects Activity, and Sandia National Laboratories.

*A.P. VanDevender, Y. Colombe, J. Amini, D. Leibfried and D.J. Wineland. Efficient fiber optic detection of trapped ion fluorescence. Physical Review Letters. Forthcoming.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>