Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invisible light flash ignites nano-fireworks

21.01.2016

A team of researchers from the University of Rostock and the Max Born Institute in Berlin demonstrated a new way to turn initially transparent nanoparticles suddenly into strong absorbers for intense laser light and let them explode.

Intense laser pulses can transform transparent material into a plasma that captures energy of the incoming light very efficiently. Scientists from Berlin and Rostock discovered a trick to start and control this process in a way that is so efficient that it could advance methods in nanofabrication and medicine.


Nano-fireworks


Prof. Dr. Thomas Fennel

(Foto: privat)

The light-matter encounter was studied by a team of physicists from the Institute of Physics of the University of Rostock and from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin.

The researchers studied the interaction of intense near-infrared (NIR) laser pulses with tiny, nanometer-sized particles that contain only a few thousand Argon atoms – so-called atomic nanoclusters. The visible NIR light pulse alone can only generate a plasma if its electromagnetic waves are so strong that they rip individual atoms apart into electrons and ions.

The scientists could outsmart this so-called ignition threshold by illuminating the clusters with an additional weak extreme-ultraviolet (XUV) laser pulse that is invisible to the human eye and lasts only a few femtoseconds (a femtosecond is a millionth of a billionth of a second).

With this trick the researchers could “switch on” the energy transfer from the near-infrared light to the particle at unexpectedly low NIR intensities and created nano-fireworks, during which electrons, ions and colourful fluorescence light are sent out from the clusters in different directions (Figure 2).

Their results open unprecedented opportunities for both fundamental laser-matter research and applications and was published in the latest issue of Physical Review Letters.

The experiments were carried out at the Max Born Institute at a 12 meter long high-harmonic generation (HHG) beamline. “The observation that argon clusters were strongly ionized even at moderate NIR laser intensities was very surprising”, explains Dr. Bernd Schütte from MBI, who conceived and performed the experiments. “Even though the additional XUV laser pulse is weak, its presence is crucial: without the XUV ignition pulse, the nanoparticles remained unaffected and transparent for the NIR light (Figure 1).”

Theorists around Prof. Thomas Fennel from the University of Rostock modelled the light-matter processes with numerical simulations and uncovered the origin of the observed synergy of the two laser pulses.

They found that only a few seed electrons created by the ionizing radiation of the XUV pulse are sufficient to start a process similar to a snow avalanche in the mountains. The seed electrons are heated in the NIR laser light and kick out even more electrons.

“In this avalanching process, the number of free electrons in the nanoparticle increases exponentially”, explains Prof. Fennel. “Eventually, the nanoscale plasma in the particles can be heated so strongly that highly charged ions are created.”

The novel concept of starting ionization avalanching with XUV light makes it possible to spatially and temporally control the strong-field ionization of nanoparticles and solids. Using HHG pulses paves the way for monitoring and controlling the ionization of nanoparticles on attosecond time scales, which is incredibly fast. One attosecond compares to a second as one second to the age of the universe.

Moreover, the ignition method is expected to be applicable also to dielectric solids. This makes the concept very interesting for applications, in which intense laser pulses are used for the fabrication of nanostructures.

By applying XUV pulses, a smaller focus size and therefore a higher precision could be achieved, as only the material in this ignited region is activated. At the same time, the overall efficiency can be improved, as NIR pulses with a much lower intensity compared to current methods could be used. In this way, novel nanolithography and nanosurgery applications may become possible in the future.

Original publication:
Ionization avalanching in clusters ignited by extreme-ultraviolet driven seed electrons
B. Schütte, M. Arbeiter, A. Mermillod-Blondin, M. J. J. Vrakking, A. Rouzée, T. Fennel.
Physical Review Letters 116, 033001 (2016), 19. Januar 2016, DOI: 10.1103/PhysRevLett.116.033001
(http://dx.doi.org/10.1103/PhysRevLett.116.033001)

Further information:
Dr. Bernd Schütte,
Division A: Attosecond Physics
Max-Born-Institute
Max-Born-Strasse 2A
12489 Berlin, Germany
Email: schuette@mbi-berlin.de

Prof. Dr. Thomas Fennel
Theoretical Cluster Physics and Nanophotonics Group
Institute of Physics, University of Rostock
Albert-Einstein-Str. 23
18059 Rostock, Germany
Phone: +49-381-498-6815
E-Mail: thomas.fennel@uni-rostock.de

Ingrid Rieck | Universität Rostock
Further information:
http://www.uni-rostock.de

Further reports about: Electrons NIR Nanoparticles Physical Review Letters ionization ions laser pulses

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>