Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invisible light flash ignites nano-fireworks

21.01.2016

A team of researchers from the University of Rostock and the Max Born Institute in Berlin demonstrated a new way to turn initially transparent nanoparticles suddenly into strong absorbers for intense laser light and let them explode.

Intense laser pulses can transform transparent material into a plasma that captures energy of the incoming light very efficiently. Scientists from Berlin and Rostock discovered a trick to start and control this process in a way that is so efficient that it could advance methods in nanofabrication and medicine.


Nano-fireworks


Prof. Dr. Thomas Fennel

(Foto: privat)

The light-matter encounter was studied by a team of physicists from the Institute of Physics of the University of Rostock and from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin.

The researchers studied the interaction of intense near-infrared (NIR) laser pulses with tiny, nanometer-sized particles that contain only a few thousand Argon atoms – so-called atomic nanoclusters. The visible NIR light pulse alone can only generate a plasma if its electromagnetic waves are so strong that they rip individual atoms apart into electrons and ions.

The scientists could outsmart this so-called ignition threshold by illuminating the clusters with an additional weak extreme-ultraviolet (XUV) laser pulse that is invisible to the human eye and lasts only a few femtoseconds (a femtosecond is a millionth of a billionth of a second).

With this trick the researchers could “switch on” the energy transfer from the near-infrared light to the particle at unexpectedly low NIR intensities and created nano-fireworks, during which electrons, ions and colourful fluorescence light are sent out from the clusters in different directions (Figure 2).

Their results open unprecedented opportunities for both fundamental laser-matter research and applications and was published in the latest issue of Physical Review Letters.

The experiments were carried out at the Max Born Institute at a 12 meter long high-harmonic generation (HHG) beamline. “The observation that argon clusters were strongly ionized even at moderate NIR laser intensities was very surprising”, explains Dr. Bernd Schütte from MBI, who conceived and performed the experiments. “Even though the additional XUV laser pulse is weak, its presence is crucial: without the XUV ignition pulse, the nanoparticles remained unaffected and transparent for the NIR light (Figure 1).”

Theorists around Prof. Thomas Fennel from the University of Rostock modelled the light-matter processes with numerical simulations and uncovered the origin of the observed synergy of the two laser pulses.

They found that only a few seed electrons created by the ionizing radiation of the XUV pulse are sufficient to start a process similar to a snow avalanche in the mountains. The seed electrons are heated in the NIR laser light and kick out even more electrons.

“In this avalanching process, the number of free electrons in the nanoparticle increases exponentially”, explains Prof. Fennel. “Eventually, the nanoscale plasma in the particles can be heated so strongly that highly charged ions are created.”

The novel concept of starting ionization avalanching with XUV light makes it possible to spatially and temporally control the strong-field ionization of nanoparticles and solids. Using HHG pulses paves the way for monitoring and controlling the ionization of nanoparticles on attosecond time scales, which is incredibly fast. One attosecond compares to a second as one second to the age of the universe.

Moreover, the ignition method is expected to be applicable also to dielectric solids. This makes the concept very interesting for applications, in which intense laser pulses are used for the fabrication of nanostructures.

By applying XUV pulses, a smaller focus size and therefore a higher precision could be achieved, as only the material in this ignited region is activated. At the same time, the overall efficiency can be improved, as NIR pulses with a much lower intensity compared to current methods could be used. In this way, novel nanolithography and nanosurgery applications may become possible in the future.

Original publication:
Ionization avalanching in clusters ignited by extreme-ultraviolet driven seed electrons
B. Schütte, M. Arbeiter, A. Mermillod-Blondin, M. J. J. Vrakking, A. Rouzée, T. Fennel.
Physical Review Letters 116, 033001 (2016), 19. Januar 2016, DOI: 10.1103/PhysRevLett.116.033001
(http://dx.doi.org/10.1103/PhysRevLett.116.033001)

Further information:
Dr. Bernd Schütte,
Division A: Attosecond Physics
Max-Born-Institute
Max-Born-Strasse 2A
12489 Berlin, Germany
Email: schuette@mbi-berlin.de

Prof. Dr. Thomas Fennel
Theoretical Cluster Physics and Nanophotonics Group
Institute of Physics, University of Rostock
Albert-Einstein-Str. 23
18059 Rostock, Germany
Phone: +49-381-498-6815
E-Mail: thomas.fennel@uni-rostock.de

Ingrid Rieck | Universität Rostock
Further information:
http://www.uni-rostock.de

Further reports about: Electrons NIR Nanoparticles Physical Review Letters ionization ions laser pulses

More articles from Physics and Astronomy:

nachricht Russian physicists create a high-precision 'quantum ruler'
24.06.2016 | Moscow Institute of Physics and Technology

nachricht Hubble confirms new dark spot on Neptune
24.06.2016 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>