Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Introducing the disposable laser

04.05.2016

Researchers make ultra-low-cost, easy to fabricate 'lasing capsules' with an inkjet printer

Since lasers were invented more than 50 years ago, they have transformed a diverse swath of technology -- from CD players to surgical instruments.


Inkjet printed "lasing capsules" serve as the core of an organic laser. Figure (a) shows a schematic of the laser setup, while figure (b) shows actual lasing capsules, which would cost only a few cents to produce. OC stands for "Output Coupler" and FP stands for Febry-Perot etalon.

Credit: Sanaur, et al/JAP

Now researchers from France and Hungary have invented a way to print lasers that's so cheap, easy and efficient they believe the core of the laser could be disposed of after each use. The team reports its findings in the Journal of Applied Physics, from AIP Publishing.

"The low-cost and easiness of laser chip fabrication are the most significant aspects of our results," said Sébastien Sanaur, an associate professor in the Center of Microelectronics in Provence at the Ecole Nationale Supérieure des Mines de Saint-Étienne in France.

Sanaur and his colleagues made organic lasers, which amplify light with carbon-containing materials. Organic lasers are not as common as inorganic lasers, like those found in laser pointers, DVD players, and optical mice, but they offer benefits such as high-yield photonic conversion, easy fabrication, low-cost and a wide range of wavelengths.

One obstacle that has held back organic lasers is the fact that they degrade relatively quickly -- but that hurdle might be less daunting if the lasers are so cheap they could be tossed when they fail.

Sanaur's research team produced their ultra-low-cost organic laser using a familiar technology: an inkjet printer.

Inkjet printing is a relatively inexpensive manufacturing process that works by squirting small jets of fluid onto an underlying material. The inkjet printer at your office is only one form of the technology -- scientists have also adapted it to print electronic circuits, pharmaceutical drugs and even biological cells.

"By piezoelectric inkjet printing, you print 'where you want, when you want,' without wasting raw materials," Sanaur said. The technique doesn't require masks, can be done at room temperature and can print onto flexible materials.

The researchers tested a variety of possible inks, before settling on a commercial ink variety called EMD6415, which they mixed with dyes. The ink was printed in small square shapes onto a quartz slide.

The dyed ink acted as the core of the laser, called a gain medium. A gain medium amplifies light and produces the characteristically narrow, single-color laser beam.

A laser also requires mirrors to reflect light back and forth through the gain medium and an energy source, called a pump, to keep the light amplification going.

The disposable part of the new laser is the printed gain medium, which the researchers call the "lasing capsule." They estimate it could be produced for only a few cents. Like the replaceable blades in a razor, the lasing capsule could be easily swapped out when it deteriorates.

The research team used two different types of dyes to produce laser emission ranging from yellow to deep red. Other dyes could cover the blue and green part of the spectrum, they predict.

With further development, the inexpensive inkjet-printed laser could send data over short plastic fibers and serve as a tool for analysing chemical or biological samples.

###

The article, "Inkjet-printed vertically-emitting solid-state organic lasers," is authored by Oussama Mhibik, Sebastien Chenais, Sébastien Forget, Christophe Defranoux and Sébastien Sanaur. It will be published in the Journal of Applied Physics May 3, 2016 (DOI: 10.1063/1.4946826). After that date, it can be accessed at http://scitation.aip.org/content/aip/journal/jap/119/17/10.1063/1.4946826.

The authors of this paper are affiliated with the Université Paris, Semilab and ENSM-SE.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See http://jap.aip.org.

Media Contact

AIP Media Line
media@aip.org
301-209-3090

 @jasonbardi

http://www.aip.org 

AIP Media Line | EurekAlert!

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>