Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016

Researchers encode more than 100 channels of information in laser light; approach could greatly increase capacity of optical communications networks

As data demands continue to grow, scientists predict that it's only a matter of time before today's telecommunication networks reach capacity unless new technologies are developed for transporting data. A new technique could help avert this bandwidth crunch by allowing light-based optical networks to carry more than one hundred times more data than is possible with current technologies.


Researchers used more than 100 spatial modes of light to transmit an image pixel by pixel over a lab-based free-space optical network

Credit: Carmelo Rosales-Guzmán, University of Witwatersrand

Laser light comes in many different shapes, or spatial modes. However, today's optical networks use just one spatial mode to carry information, limiting the amount of data that can be transmitted at one time. Researchers led by Andrew Forbes, a professor at the University of Witwatersrand, South Africa, developed a technique known as spatial multiplexing that reshapes a laser beam into many spatial modes that can each carry information.

In a paper presented at the OSA Laser Congress in Boston, the researchers demonstrate optical communication with more than 100 spatial modes by combining their new spatial multiplexing approach with wavelength division multiplexing (WDM), which uses different wavelengths of light to carry information.

"We created 35 spatial modes encoded in three different wavelengths, producing 105 total modes," said Carmelo Rosales-Guzmán, research fellow and first author of the paper. "Our new method might serve as the basis for future communication technologies."

The researchers demonstrated that their technique can transmit data with 98 percent efficiency in a laboratory free-space optical network, which uses light to transmit information over the air. The scientists say the approach should also work in optical fibers, the basis for fiber-optic communications.

Increasing bandwidth with more light modes

The new technique makes use of light with an orbital angular momentum, which gives it a twisted, or helical, shape. Different spatial modes can be created by varying the number of twists, known as the azimuthal degrees of freedom. While other scientists have been exploring the use of azimuthal degrees of freedom for increasing bandwidth, recent research showed that even though, in theory, the set of modes with orbital angular momentum is infinite, in practice there aren't enough modes available to make significant improvements.

Forbes' team solved this problem by using the azimuthal degrees of freedom plus another variable known as a radial degree of freedom. Each azimuthal degree of freedom can have, in theory, an infinite amount of radial degrees of freedom, but there are practical limitations that restrict this number. Because all the modes are orthogonal to each other, the signals don't get mixed up as they travel and can be separated upon arrival at their destination. The researchers say that this is the first time two spatial degrees of freedom have been used to optically encode information.

Key to this new approach is an optical device known as a spatial light modulator. The researchers used one spatial light modulator to shape the laser light into the various modes and another to reverse the process on the receiving end.

"One of the advantages of our approach is that we only need a single detector to demultiplex all the spatial modes to recover all the information," said Rosales-Guzmán. "This is faster than other approaches for increasing bandwidth that need multiple detectors."

Sending pictures pixel by pixel

To test the new technique, the researchers used it to encode a grayscale and color image. Each image was sent across a communication link pixel by pixel and then each pixel was recovered to reconstruct the image. For the grayscale image, each gray level was linked to a separate spatial mode, allowing transmission of 105 gray levels.

"In this demonstration, sending a 10,000-pixel image took 5 to 7 minutes," said Rosales-Guzmán. "However we could increase that speed by sending two or four pixels at the same time or by using many more wavelengths."

Real-world free-space optical networks -- which can transfer information between buildings, for example -- come with many challenges that aren't present in the lab. As a next step, the researchers are partnering with experts in free-space communication to adapt their technique for practical applications.

"We are working with a company in South Africa that already makes a device that has the ability to use different spatial modes for free space communication," said Rosales-Guzmán. "We are interested in trying to increase the bandwidth of their device to four times what it is capable of now."

###

About the Presentation

Angela Dudley, an honorary academic at the University of Witwatersrand and a visiting scholar in Andrew Forbes' lab, will present "Free-space communication with over 100 spatial modes" during the Free Space Optical Communications I session of the Application of Lasers for Sensing & Free Space Communication Conference on Thursday, Nov. 3 from 9:15 to 9:30 a.m. in Room 1 of The Westin Boston Waterfront.

MEDIA REGISTRATION: Media/analyst registration for OSA Laser Congress 2016 can be arranged by emailing mediarelations@osa.org. Please visit the event website at OSA Laser Congress for additional information, including travel arrangement details.

About OSA Laser Congress

The OSA Laser Congress will be held 30 October - 03 November at the Westin Boston Waterfront in Boston, Massachusetts, USA. The Congress features the latest advances in solid state laser development and related technologies for free space laser communication, laser-based sensing, and numerous industrial applications. It provides attendees with a comprehensive view of the latest technological advances as well as applications of laser technologies for industrial products and markets. In 2016, the Congress offers three collocated meetings: Advanced Solid State Lasers Conference (ASSL), Application of Lasers for Sensing & Free Space Communication (LS&C) and Laser Applications Conference (LAC) along with the Executive Forum.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-321-5488

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>