Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial Pump Inspired by Flapping Bird Wings

05.02.2015

New ratcheting pump uses vibrations instead of traditional rotor to transport fluids

Birds are unwitting masters of fluid dynamics -- they manipulate airflow each time they flap their wings, pushing air in one direction and moving themselves in another. Two New York University researchers have taken inspiration from avian locomotion strategies and created a pump that moves fluid using vibration instead of a rotor. Their results will be published February 3, 2015, in the journal Applied Physics Letters, from AIP Publishing.


B. Thiria & J. Zhang

When a fluid is squeezed and expanded repeatedly between two sawtooth-like boundaries, a net flow is generated to the right.

"When we use a household pump, that pump is very likely a centrifugal pump. It uses a high-speed rotor to move water by throwing it from the pump’s inlet to the outlet," explained Benjamin Thiria, who carried out the work in collaboration with Jun Zhang.

Instead of a rotor, Thiria and Zhang’s design has teeth. Two asymmetrically sawtoothed panels, placed with their teeth facing each other, create a channel that can rapidly open and close. Water rushes into the channel when it expands and is forced out when it contracts.

"When a fluid is squeezed and expanded repeatedly, the asymmetric boundary forces the fluid to move in one direction," said Zhang. The repeated vibration of the channel drives fluid transport because the asymmetry of the ratchet’s teeth makes it easier for the fluid to move with them than against them.

The pump could be particularly useful in industrial situations where machinery is vibrating excessively and therefore operating inefficiently. Because it is powered by vibration, it could capture some of the wasted mechanical energy and instead use it for a productive task like circulating coolant. It would also dampen the noise that vibrating machinery tends to emit.

In the future, Thiria and Zhang hope to find other examples of similar pumps in nature -- such as the human circulatory system -- and use them to further optimize their own design.

"For many years, fluid-structure interaction has been the most important subject for scientists working in fluid physics," said Thiria, who now conducts research at ESPCI ParisTech. "Our pump shows that surprising results come from fluid-structure interaction."

The article, "Ratcheting Fluid with Geometric Anisotropy," is authored by Benjamin Thiria and Jun Zhang. It will be published in Applied Physics Letters on February 2, 2015 (DOI: 10.1063/1.4906927). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/106/5/10.1063/1.4906927 

The authors of this paper are affiliated with New York University (Thiria and Zhang) and ESPCI ParisTech (Thiria).

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>