Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In search of dark energy

16.12.2015

An international consortium of astrophysicists is currently measuring the three-dimensional structure of the Universe by means of an X-ray satellite. Among many exciting prospects, the project will provide new insights into the nature of dark energy. Dark energy is thought to cause the Universe to expand at an ever faster rate. A series of 13 articles appears in the ’Astronomy and Astrophysics’ journal in which the team presents their first results. The X-ray data processing was performed in Bonn.

Our Universe looks like a gigantic sponge: vast spaces (the holes of the sponge) are completely devoid of matter. Filaments made of galaxies and interstellar gas delineate the boundaries of the voids. These form the main structure of the sponge.


The XXL Project monitors two parts of the universe (XXL North and XXL South). The white dots show the galaxy clusters detected so far, the red dots the 100 brightest clusters.

(c) Project XXL - D. Pomarède (SDvision software)

Where filaments cross, the matter density is the largest: thousands of galaxies aggregate in small volumes. These are known as clusters of galaxies. Researchers from all over the world are currently busy measuring this structure.

Indeed, it provides a wealth of information on the origin of the Universe. In particular, scientists hope to shed light on a mysterious constituent of our Universe, the dark energy. This diffuse energy component essentially works like an interstellar baking powder: it drives the cosmos to inflate ever faster.

Dark matter and dark energy

Our ability to see the stars glow in a clear night sky results from a small irregularity. During the big-bang all the cosmic material was gathered into one huge gazeous cloud – almost uniformly, but not exactly: in certain places the cloud was a little bit denser than in others.

Hence, these overdense areas exerted a stronger gravitational pull and attracted the surrounding material to them. With time, more and more matter concentrated around these seeds. In contrast, the space between them became ever emptier. This is how the sponge structure that we now witness has taken shape over the past 13 billion years.

Some 40 years ago, observations revealed that galaxies spin so fast that they should lose the stars inside them due to the centrifugal force. An invisible substance seems to prevent this from happening by its gravitational attraction – the dark matter. About 85 percent of the matter in the Universe is composed of this exotic constituent. The dark matter also accelerated the formation of the sponge structure we see today.

The dark matter makes the Universe so heavy that it should significantly slow down the expansion of the Universe. Yet, this does not happen: according to recent observations, the expansion has actually sped up. The probable cause of this phenomenon is the dark energy. It is tearing appart the Universe in spite of the powerfull gravitational attraction. What exactly dark energy is made of remains unknown.

To help answer this question, an international team of researchers are using a satellite from the European Space Agency (ESA) that is capable of detecting X-rays to map a large area of the sky to an unprecedented depth. The hot gas in clusters of galaxies radiates X-ray emission and can therefore be observed with this satellite. The scientists intend to discover about 500 of these clusters of galaxies and to study them in detail.

Some of them are as far as 10 billion light-years away – 2/3rd of the size of the observable universe. With these clusters, they intend to map out the three dimensional structure of a representative portion of the Universe. By using clusters of galaxies to accurately trace the skeleton of this structure, the team can investigate the forces that gave it shape: both the gravitational pull induced by the distribution of regular and dark matter, but also the mysterious counteracting dark energy.

’We have processed the X-ray data at the University of Bonn’, explains Dr. Florian Pacaud from the Argelander-Institut für Astronomie. ’In the present series of publications, we present a first part of our results, the analysis of the 100 brightest clusters of galaxies’. With this, the scientists could already confirm a recent result that puzzled the cosmologists in the last couple of years: there seem to be significantly less clusters than expected. In addition, the researchers directly observed the process of structure formation in action: they found clear evidence for the existence of superclusters in their observations. Superclusters consist of several clusters of galaxies bound together by their respective gravity. They are expected to collapse into a larger cluster of galaxies in the near future.

More than 100 scientists from all over the globe collaborate in this large project entitled ’XXL’. The project is lead by Dr. Marguerite Pierre from the CEA/Saclay Institute in France. More details can be found on the dedicated website: http://irfu.cea.fr/xxl.

Publication: F. Pacaud et al.: The XXL Survey: II. The bright cluster sample - catalogue and luminosity function; Astronomy and Astrophysics

Contact:

Dr. Florian Pacaud
Argelander-Institut für Astronomie
University of Bonn
Tel. 0228/736788
Email: fpacaud@uni-bonn.de

Weitere Informationen:

http://arxiv.org/abs/1512.04264 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>