Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In search of dark energy

16.12.2015

An international consortium of astrophysicists is currently measuring the three-dimensional structure of the Universe by means of an X-ray satellite. Among many exciting prospects, the project will provide new insights into the nature of dark energy. Dark energy is thought to cause the Universe to expand at an ever faster rate. A series of 13 articles appears in the ’Astronomy and Astrophysics’ journal in which the team presents their first results. The X-ray data processing was performed in Bonn.

Our Universe looks like a gigantic sponge: vast spaces (the holes of the sponge) are completely devoid of matter. Filaments made of galaxies and interstellar gas delineate the boundaries of the voids. These form the main structure of the sponge.


The XXL Project monitors two parts of the universe (XXL North and XXL South). The white dots show the galaxy clusters detected so far, the red dots the 100 brightest clusters.

(c) Project XXL - D. Pomarède (SDvision software)

Where filaments cross, the matter density is the largest: thousands of galaxies aggregate in small volumes. These are known as clusters of galaxies. Researchers from all over the world are currently busy measuring this structure.

Indeed, it provides a wealth of information on the origin of the Universe. In particular, scientists hope to shed light on a mysterious constituent of our Universe, the dark energy. This diffuse energy component essentially works like an interstellar baking powder: it drives the cosmos to inflate ever faster.

Dark matter and dark energy

Our ability to see the stars glow in a clear night sky results from a small irregularity. During the big-bang all the cosmic material was gathered into one huge gazeous cloud – almost uniformly, but not exactly: in certain places the cloud was a little bit denser than in others.

Hence, these overdense areas exerted a stronger gravitational pull and attracted the surrounding material to them. With time, more and more matter concentrated around these seeds. In contrast, the space between them became ever emptier. This is how the sponge structure that we now witness has taken shape over the past 13 billion years.

Some 40 years ago, observations revealed that galaxies spin so fast that they should lose the stars inside them due to the centrifugal force. An invisible substance seems to prevent this from happening by its gravitational attraction – the dark matter. About 85 percent of the matter in the Universe is composed of this exotic constituent. The dark matter also accelerated the formation of the sponge structure we see today.

The dark matter makes the Universe so heavy that it should significantly slow down the expansion of the Universe. Yet, this does not happen: according to recent observations, the expansion has actually sped up. The probable cause of this phenomenon is the dark energy. It is tearing appart the Universe in spite of the powerfull gravitational attraction. What exactly dark energy is made of remains unknown.

To help answer this question, an international team of researchers are using a satellite from the European Space Agency (ESA) that is capable of detecting X-rays to map a large area of the sky to an unprecedented depth. The hot gas in clusters of galaxies radiates X-ray emission and can therefore be observed with this satellite. The scientists intend to discover about 500 of these clusters of galaxies and to study them in detail.

Some of them are as far as 10 billion light-years away – 2/3rd of the size of the observable universe. With these clusters, they intend to map out the three dimensional structure of a representative portion of the Universe. By using clusters of galaxies to accurately trace the skeleton of this structure, the team can investigate the forces that gave it shape: both the gravitational pull induced by the distribution of regular and dark matter, but also the mysterious counteracting dark energy.

’We have processed the X-ray data at the University of Bonn’, explains Dr. Florian Pacaud from the Argelander-Institut für Astronomie. ’In the present series of publications, we present a first part of our results, the analysis of the 100 brightest clusters of galaxies’. With this, the scientists could already confirm a recent result that puzzled the cosmologists in the last couple of years: there seem to be significantly less clusters than expected. In addition, the researchers directly observed the process of structure formation in action: they found clear evidence for the existence of superclusters in their observations. Superclusters consist of several clusters of galaxies bound together by their respective gravity. They are expected to collapse into a larger cluster of galaxies in the near future.

More than 100 scientists from all over the globe collaborate in this large project entitled ’XXL’. The project is lead by Dr. Marguerite Pierre from the CEA/Saclay Institute in France. More details can be found on the dedicated website: http://irfu.cea.fr/xxl.

Publication: F. Pacaud et al.: The XXL Survey: II. The bright cluster sample - catalogue and luminosity function; Astronomy and Astrophysics

Contact:

Dr. Florian Pacaud
Argelander-Institut für Astronomie
University of Bonn
Tel. 0228/736788
Email: fpacaud@uni-bonn.de

Weitere Informationen:

http://arxiv.org/abs/1512.04264 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>