Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique may help discover Earth-like planets

24.02.2016

Astrophysicist may have a solution to 'candle and lighthouse' problem

One of the biggest quests in astrophysics is to find Earth-like planets around other stars - places where life may exist. Regular telescopes are not good at directly imaging such small objects because a host star's light generally drowns out the relatively dimmer light of a potential planet.


The CID device has the ability to detect dim objects even behind Sirius, the brightest star in our galaxy. The "A" image shows the Sirius field and the sky coordinates in green. Red dots represent already cataloged objects. The red line is the motion of Sirius. The "B" image shows faint objects detected near Sirius.

Credit: Florida Institute of Technology

But a new development in space imaging may solve that vexing problem.

A study led by Florida Institute of Technology astrophysicist Daniel Batcheldor has demonstrated that a charge injection device, or CID, has the ability to capture light from objects tens of millions of times fainter than another object in the same picture. An exoplanet next to bright star is one such example. This ability is a result of how the CID is used as a type of camera: each individual pixel works independently and uses a special indexing system. Very bright pixels get addressed very quickly, while the faint pixels are allowed to carry on gathering the fainter light.

"If this technology can be added to future space missions, it may help us make some profound discoveries regarding our place in the universe," Batcheldor said.

The study's findings were reported in the Jan. 18, 2016, edition of the Publications of the Astronomical Society of the Pacific.

To study exoplanets in detail, scientists are forced to make observations of these very faint objects next to bright stars. The situation is often described as the candle-next-to-the-lighthouse problem, though in reality is thousands of times worse. "Current instrument technology is very complex and expensive and still a ways off from achieving direct images of Earth-like planets," Batcheldor said.

With a grant from the American Astronomical Society, Batcheldor and several graduate students in the Physics and Space Sciences Department led the study using a CID on Florida Tech's 0.8-meter Ortega telescope. They were able to pick out objects 70 million times fainter through the glare of Sirius, the brightest star in our night sky. That's over one thousand times better than an off-the-shelf astronomical camera.

The fact that a faint object could be accurately detected through the less-than-ideal, thick Florida atmosphere makes the observations made by the CID more exciting. Batcheldor plans to test the CID later this year at a telescope on the Canary Islands, and a prototype for a CID is slated for testing on the International Space Station later this year. In both cases, the CIDs are being built by Thermo-Fisher Scientific.

Batcheldor's solution is of potential interest to scientists because it is relatively inexpensive compared to other ideas, such as an external occulter like a star shade, which would require multiple, complicated components working in tandem in space for getting a glimpse of just a few small, Earth-sized exoplanets.

"Personally, I like very simple, straightforward solutions, especially when there is a complex problem," he said. "The CID is able to look at a very bright source next to a very faint source and not experience much of the image degradation you would normally experience with a typical camera."

Media Contact

Adam Lowenstein
adam@fit.edu
321-674-8964

http://www.fit.edu 

Adam Lowenstein | EurekAlert!

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>