Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying New Sources of Turbulence in Spherical Tokamaks

30.11.2015

For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the plasma that flows in facilities called tokamaks can cause heat to leak from the core of the plasma to its outer edge, causing reactions to fizzle out.

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have for the first time modeled previously unsuspected sources of turbulence in spherical tokamaks, an alternative design for producing fusion energy. The findings, published online in October in Physics of Plasmas, could influence the development of future fusion facilities. This work was supported by the DOE Office of Science.


Eliot Feibush

Computer simulation of turbulence in a model of the NSTX-U.

Spherical tokamaks, like the recently completed National Spherical Torus Experiment-Upgrade (NSTX-U) at PPPL, are shaped like cored apples compared with the mushroom-like design of conventional tokamaks that are more widely used. The cored-apple shape provides some distinct characteristics for the behavior of the plasma inside.

The paper, with principal research physicist Weixing Wang as lead author, identifies two important new sources of turbulence based on data from experiments on the National Spherical Torus Experiment prior to its upgrade. The discoveries were made by using state-of-the-art large-scale computer simulations. These sources are:

• Instabilities caused by plasma that flows faster in the center of the fusion facility than toward the edge when rotating strongly in L-mode — or low confinement — regimes. These instabilities, called “Kelvin-Helmholtz modes” after physicists Baron Kelvin and Hermann von Helmholtz, act like wind that stirs up waves as it blows over water and are for the first time found to be relevant for realistic fusion experiments.

Such non-uniform plasma flows have been known to play favorable roles in fusion plasmas in conventional and spherical tokamaks. The new results from this study suggest that we may need to keep these flows within an optimized level in spherical tokamaks.

• Trapped electrons that bounce between two points in a section of the tokamak instead of swirling all the way around the facility. These electrons were shown to cause significant leakage of heat in H-mode — or high-confinement — regimes by driving a specific instability when they collide frequently. This type of instability is believed to play little role in conventional tokamaks but can provide a robust source of plasma turbulence in spherical tokamaks.

Most interestingly, the model predicts a range of trapped electron collisions in spherical tokamaks that can be turbulence-free, thus improving the plasma confinement. Such favorable plasmas could possibly be achieved by future advanced spherical tokamaks operating at high temperature.

Findings of the new model can be tested on the NSTX-U and will help guide experiments to identify non-traditional sources of turbulence in the spherical facility. Results of this research can shed light on the physics behind key obstacles to plasma confinement in spherical facilities and on ways to overcome them in future machines.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://www.science.energy.gov.

Contact Information
John Greenwald
Science Editor
jgreenwa@pppl.gov
Phone: 609-243-2672

http://www.pppl.gov

John Greenwald | newswise

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>