Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Identifying New Sources of Turbulence in Spherical Tokamaks


For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the plasma that flows in facilities called tokamaks can cause heat to leak from the core of the plasma to its outer edge, causing reactions to fizzle out.

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have for the first time modeled previously unsuspected sources of turbulence in spherical tokamaks, an alternative design for producing fusion energy. The findings, published online in October in Physics of Plasmas, could influence the development of future fusion facilities. This work was supported by the DOE Office of Science.

Eliot Feibush

Computer simulation of turbulence in a model of the NSTX-U.

Spherical tokamaks, like the recently completed National Spherical Torus Experiment-Upgrade (NSTX-U) at PPPL, are shaped like cored apples compared with the mushroom-like design of conventional tokamaks that are more widely used. The cored-apple shape provides some distinct characteristics for the behavior of the plasma inside.

The paper, with principal research physicist Weixing Wang as lead author, identifies two important new sources of turbulence based on data from experiments on the National Spherical Torus Experiment prior to its upgrade. The discoveries were made by using state-of-the-art large-scale computer simulations. These sources are:

• Instabilities caused by plasma that flows faster in the center of the fusion facility than toward the edge when rotating strongly in L-mode — or low confinement — regimes. These instabilities, called “Kelvin-Helmholtz modes” after physicists Baron Kelvin and Hermann von Helmholtz, act like wind that stirs up waves as it blows over water and are for the first time found to be relevant for realistic fusion experiments.

Such non-uniform plasma flows have been known to play favorable roles in fusion plasmas in conventional and spherical tokamaks. The new results from this study suggest that we may need to keep these flows within an optimized level in spherical tokamaks.

• Trapped electrons that bounce between two points in a section of the tokamak instead of swirling all the way around the facility. These electrons were shown to cause significant leakage of heat in H-mode — or high-confinement — regimes by driving a specific instability when they collide frequently. This type of instability is believed to play little role in conventional tokamaks but can provide a robust source of plasma turbulence in spherical tokamaks.

Most interestingly, the model predicts a range of trapped electron collisions in spherical tokamaks that can be turbulence-free, thus improving the plasma confinement. Such favorable plasmas could possibly be achieved by future advanced spherical tokamaks operating at high temperature.

Findings of the new model can be tested on the NSTX-U and will help guide experiments to identify non-traditional sources of turbulence in the spherical facility. Results of this research can shed light on the physics behind key obstacles to plasma confinement in spherical facilities and on ways to overcome them in future machines.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Contact Information
John Greenwald
Science Editor
Phone: 609-243-2672

John Greenwald | newswise

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>