Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble spies Big Bang frontiers

23.10.2015

Observations by the NASA/ESA Hubble Space Telescope have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the Universe. Some of these galaxies formed just 600 million years after the Big Bang and are fainter than any other galaxy yet uncovered by Hubble. The team has determined, for the first time with some confidence, that these small galaxies were vital to creating the Universe that we see today.

An international team of astronomers, led by Hakim Atek of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, has discovered over 250 tiny galaxies that existed only 600-900 million years after the Big Bang [1] — one of the largest samples of dwarf galaxies yet to be discovered at these epochs. The light from these galaxies took over 12 billion years to reach the telescope, allowing the astronomers to look back in time when the universe was still very young.


This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACS J0416.1–2403. This is one of six being studied by the Hubble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made.

Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. Astronomers used this and two other clusters to find galaxies which existed only 600 to 900 million years after the Big Bang.

Credit: NASA, ESA and the HST Frontier Fields team (STScI)

Although impressive, the number of galaxies found at this early epoch is not the team’s only remarkable breakthrough, as Johan Richard from the Observatoire de Lyon, France, points out, “The faintest galaxies detected in these Hubble observations are fainter than any other yet uncovered in the deepest Hubble observations.”

By looking at the light coming from the galaxies the team discovered that the accumulated light emitted by these galaxies could have played a major role in one of the most mysterious periods of the Universe’s early history — the epoch of reionisation.

Reionisation started when the thick fog of hydrogen gas that cloaked the early Universe began to clear. Ultraviolet light was now able to travel over larger distances without being blocked and the Universe became transparent to ultraviolet light [2].

By observing the ultraviolet light from the galaxies found in this study the astronomers were able to calculate whether these were in fact some of the galaxies involved in the process. The team determined, for the first time with some confidence, that the smallest and most abundant of the galaxies in the study could be the major actors in keeping the Universe transparent.

By doing so, they have established that the epoch of reionisation — which ends at the point when the Universe is fully transparent — came to a close about 700 million years after the Big Bang [3].

Lead author Atek explained, “If we took into account only the contributions from bright and massive galaxies, we found that these were insufficient to reionise the Universe. We also needed to add in the contribution of a more abundant population of faint dwarf galaxies.”

To make these discoveries, the team utilised the deepest images of gravitational lensing made so far in three galaxy clusters, which were taken as part of the Hubble Frontier Fields programme [4]. These clusters generate immense gravitational fields capable of magnifying the light from the faint galaxies that lie far behind the clusters themselves. This makes it possible to search for, and study, the first generation of galaxies in the Universe.

Jean-Paul Kneib, co-author of the study from the Ecole Polytechnique Fédérale de Lausanne, Switzerland, explains, “Clusters in the Frontier Fields act as powerful natural telescopes and unveil these faint dwarf galaxies that would otherwise be invisible.”

Co-author of the study Mathilde Jauzac, from Durham University, UK, and the University of KwaZulu-Natal, South Africa, remarks on the significance of the discovery and Hubble’s role in it,“Hubble remains unrivalled in its ability to observe the most distant galaxies. The sheer depth of the Hubble Frontier Field data guarantees a very precise understanding of the cluster magnification effect, allowing us to make discoveries like these.”

These results highlight the impressive possibilities of the Frontier Fields programme with more galaxies, at even earlier time, likely to be revealed when Hubble peers at three more of these galaxy clusters in the near future.

Notes


[1] The calculated redshift for these objects is between z = 6 and z = 8.


[2] Neutral hydrogen gas absorbs all the high-energy ultraviolet light emitted by hot young stars very efficiently. At the same time, the absorbed ultraviolet light ionises the hydrogen. The very low density ionised hydrogen gas filling the universe became fully transparent.The hot stars carve out transparent bubbles in the gas and once all these bubbles merge to fill all of space, reionisation is said to be complete and the Universe becomes transparent to ultraviolet light.


[3] This corresponds to a redshift of about z = 7.5.


[4] The Hubble Frontier Fields is a three-year, 840-orbit programme which will yield the deepest views of the Universe to date, combining the power of Hubble with the gravitational amplification of light around six different galaxy clusters to explore more distant regions of space than could otherwise be seen.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

More information

Image credit: NASA, ESA and the HST Frontier Fields team (STScI)

This research was presented in a paper entitled “Are Ultra-faint Galaxies at z = 6−8 Responsible for Cosmic Reionization? Combined Constraints from the Hubble Frontier Fields Clusters And Parallels”, by H. Atek et al., to appear in the Astrophysical Journal.

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The international team of astronomers in this study consists of Hakim Atek (Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Switzerland ; Department of Astronomy, Yale University, USA), Johan Richard (CRAL, Observatoire de Lyon, France), Mathilde Jauzac (Institute for Computational Cosmology, Durham University, UK; Astrophysics and Cosmology Research Unit, University of KwaZulu-Natal, South Africa), Jean-Paul Kneib (Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Switzerland; Aix Marseille Université, CNRS, LAM UMR 7326, France), Priyamvada Natarajan (Department of Astronomy, Yale University, USA), Marceau Limousin (Aix Marseille Université, CNRS, LAM UMR 7326, France), Daniel Schaerer (Observatoire de Genève, Switzerland; CNRS, IRAP, France), Eric Jullo (Aix Marseille Université, CNRS, LAM UMR 7326, France), Harald Ebeling (Institute for Astronomy, University of Hawaii, USA), Eiichi Egami (Steward Observatory, University of Arizona, USA), and Benjamin Clement (CRAL, Observatoire de Lyon, France).

Links
Images of Hubble
Frontier Fields programme
Link to science paper
Hubblecast 70: Peering around cosmic corners

Contacts

Hakim Atek
Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Switzerland
Astronomy Departement, Yale University, USA
Tel: +1 203 645 82 23
Email: hakim.atek@epfl.ch

Johan Richard
Centre de Recherche Astrophysique de Lyon
Observatoire de Lyon, Université Lyon 1, France
Cell: +33 4 78 86 83 7
Email: johan.richard@univ-lyon1.fr

Mathilde Jauzac
Durham University, UK
University of KwaZulu-Natal, South Africa
Tel: +44 7445218614
Email: mathilde.jauzac@durham.ac.uk

Jean-Paul Kneib
Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Switzerland
Laboratoire d’Astrophysique de Marseille, France
Tel: +41 22 3792473, +41 21 693 04 63, +33 695 795 392
Email: jean-paul.kneib@epfl.ch

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching bei München, Germany
Cell: +49 176 62397500
Email: mjaeger@partner.eso.org

Mathias Jäger | ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1523/?lang

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>