Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble observes one-of-a-kind star nicknamed 'Nasty'

22.05.2015

Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is so weird that astronomers have nicknamed it "Nasty 1," a play on its catalog name of NaSt1. The star may represent a brief transitory stage in the evolution of extremely massive stars.

First discovered several decades ago, Nasty 1 was identified as a Wolf-Rayet star, a rapidly evolving star that is much more massive than our sun. The star loses its hydrogen-filled outer layers quickly, exposing its super-hot and extremely bright helium-burning core.


Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. Astronomers have nicknamed it 'Nasty 1,' a play on its catalog name of NaSt1.

Credit: NASA/Hubble

But Nasty 1 doesn't look like a typical Wolf-Rayet star. The astronomers using Hubble had expected to see twin lobes of gas flowing from opposite sides of the star, perhaps similar to those emanating from the massive star Eta Carinae, which is a Wolf-Rayet candidate. Instead, Hubble revealed a pancake-shaped disk of gas encircling the star.

The vast disk is nearly 2 trillion miles wide, and may have formed from an unseen companion star that snacked on the outer envelope of the newly formed Wolf-Rayet. Based on current estimates, the nebula surrounding the stars is just a few thousand years old, and as close as 3,000 light-years from Earth.

"We were excited to see this disk-like structure because it may be evidence for a Wolf-Rayet star forming from a binary interaction," said study leader Jon Mauerhan of the University of California, Berkeley. "There are very few examples in the galaxy of this process in action because this phase is short-lived, perhaps lasting only a hundred thousand years, while the timescale over which a resulting disk is visible could be only ten thousand years or less."

In the team's proposed scenario, a massive star evolves very quickly, and as it begins to run out of hydrogen, it swells up. Its outer hydrogen envelope becomes more loosely bound and vulnerable to gravitational stripping, or a type of stellar cannibalism, by a nearby companion star. In that process, the more compact companion star winds up gaining mass, and the original massive star loses its hydrogen envelope, exposing its helium core to become a Wolf-Rayet star.

Another way Wolf-Rayet stars are said to form is when a massive star ejects its own hydrogen envelope in a strong stellar wind streaming with charged particles. The binary interaction model where a companion star is present is gaining traction because astronomers realize that at least 70 percent of massive stars are members of double-star systems. Direct mass loss alone also cannot account for the number of Wolf-Rayet stars relative to other less-evolved massive stars in the galaxy.

"We're finding that it is hard to form all the Wolf-Rayet stars we observe by the traditional wind mechanism, because mass loss isn't as strong as we used to think," said Nathan Smith of the University of Arizona in Tucson, who is a co-author on the new NaSt1 paper. "Mass exchange in binary systems seems to be vital to account for Wolf-Rayet stars and the supernovae they make, and catching binary stars in this short-lived phase will help us understand this process."

But the mass transfer process in mammoth binary systems isn't always efficient. Some of the stripped matter can spill out during the gravitational tussle between the stars, creating a disk around the binary.

"That's what we think is happening in Nasty 1," Mauerhan said. "We think there is a Wolf-Rayet star buried inside the nebula, and we think the nebula is being created by this mass-transfer process. So this type of sloppy stellar cannibalism actually makes Nasty 1 a rather fitting nickname."

The star's catalogue name, NaSt1, is derived from the first two letters of each of the two astronomers who discovered it in 1963, Jason Nassau and Charles Stephenson.

Viewing the Nasty 1 system hasn't been easy. The system is so heavily cloaked in gas and dust, it blocks even Hubble's view of the stars. Mauerhan's team cannot measure the mass of each star, the distance between them, or the amount of material spilling onto the companion star.

Previous observations of Nasty 1 have provided some information on the gas in the disk. The material, for example, is travelling about 22,000 miles per hour in the outer nebula, slower than similar stars. The comparatively slow speed indicates that the star expelled its material through a less violent event than Eta Carinae's explosive outbursts, where the gas is travelling hundreds of thousands of miles per hour.

Nasty 1 may also be shedding the material sporadically. Past studies in infrared light have shown evidence for a compact pocket of hot dust very close to the central stars. Recent observations by Mauerhan and colleagues at the University of Arizona, using the Magellan telescope at Las Campanas Observatory in Chile, have resolved a larger pocket of cooler dust that may be indirectly scattering the light from the central stars. The presence of warm dust implies that it formed very recently, perhaps in spurts, as chemically enriched material from the two stellar winds collides at different points, mixes, flows away, and cools. Sporadic changes in the wind strength or the rate the companion star strips the main star's hydrogen envelope might also explain the clumpy structure and gaps seen farther out in the disk.

To measure the hypersonic winds from each star, the astronomers turned to NASA's Chandra X-ray Observatory. The observations revealed scorching hot plasma, indicating that the winds from both stars are indeed colliding, creating high-energy shocks that glow in X-rays. These results are consistent with what astronomers have observed from other Wolf-Rayet systems.

The chaotic mass-transfer activity will end when the Wolf-Rayet star runs out of material. Eventually, the gas in the disk will dissipate, providing a clear view of the binary system.

"What evolutionary path the star will take is uncertain, but it will definitely not be boring," said Mauerhan. "Nasty 1 could evolve into another Eta Carinae-type system. To make that transformation, the mass-gaining companion star could experience a giant eruption because of some instability related to the acquiring of matter from the newly formed Wolf-Rayet. Or, the Wolf-Rayet could explode as a supernova. A stellar merger is another potential outcome, depending on the orbital evolution of the system. The future could be full of all kinds of exotic possibilities depending on whether it blows up or how long the mass transfer occurs, and how long it lives after the mass transfer ceases."

The team's results will appear May 21 in the online edition of the Monthly Notices of the Royal Astronomical Society.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Nasty 1 and the Hubble Space Telescope, visit:

Media Contact

Ray Villard
villard@stsci.org
410-338-4514

 @NASAGoddard

http://www.nasa.gov/goddard

Ray Villard | EurekAlert!

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>