Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a giant impact formed asteroid Vesta’s ‘belt’

04.11.2014

Collisions of heavenly bodies generate almost unimaginable levels of energy. Researchers at Brown used NASA’s ultra-high-speed cannon and computer models to simulate such a collision on Vesta, the second-largest object in the asteroid belt. Their analysis of the images — taken at a million frames per second — shows how Vesta may have gotten the deep grooves that encircle its midsection.

When NASA’s Dawn spacecraft visited the asteroid Vesta in 2011, it showed that deep grooves that circle the asteroid’s equator like a cosmic belt were probably caused by a massive impact on Vesta’s south pole.


A massive collision

A high-speed camera recorded a laboratory simulation of colliding heavenly bodies. An analysis of shock propagation suggests what may have caused the tilted canyon-like grooves around the equator of the asteroid Vesta.

Image: Angela Stickle and Peter Schultz

Now, using a super high-speed cannon at NASA’s Ames Research Center, Brown University researchers have shed new light on the violent chain of events deep in Vesta’s interior that formed those surface grooves, some of which are wider than the Grand Canyon.

“Vesta got hammered,” said Peter Schultz, professor of earth, environmental, and planetary sciences at Brown and the paper’s senior author. “The whole interior was reverberating, and what we see on the surface is the manifestation of what happened in the interior.”

The research suggests that the Rheasilvia basin on Vesta’s south pole was created by an impactor that came in at an angle, rather than straight on. But that glancing blow still did an almost unimaginable amount of damage.

The study shows that just seconds after the collision, rocks deep inside the asteroid began to crack and crumble under the stress. Within two minutes major faults reached near the surface, forming deep the canyons seen today near Vesta’s equator, far from the impact point.

The research, led by Angela Stickle, a former graduate student at Brown and now a researcher at the Johns Hopkins University Applied Physics Laboratory, will appear in the February issue of the journal Icarus and is now available online.

"As soon as Pete and I saw the images coming down from the Dawn mission at Vesta, we were really excited," Stickle said. "The large fractures looked just like things we saw in our experiments. So we decided to look into them in more detail, and run the models, and we found really interesting relationships."

For the study, the researchers used the Ames Vertical Gun Range, a cannon with a 14-foot barrel used to simulate collisions on celestial bodies. The gun uses gunpowder and compressed hydrogen gas to launch projectiles at blinding speed, up to 16,000 miles per hour.

For this latest research, Schultz and his colleagues launched small projectiles at softball-sized spheres made of an acrylic material called PMMA. When struck, the normally clear material turns opaque at points of high stress. By watching the impact with high-speed cameras that take a million shots per second, the researchers can see how these stresses propagate through the material.

The experiments showed that that damage from the impact starts where one would expect: at the impact point. But shortly after, failure patterns begin to form inside the sphere, opposite the point of impact. Those failures grow inward toward the sphere’s center and then propagate outward toward the edges of the sphere like a blooming flower.

Using numerical models to scale the lab collision up to the size of Vesta, the second-largest object in the asteroid belt, the researchers showed that the outward-blooming “rosette” of damage extending to the surface is responsible for the troughs that form a belt around Vesta’s equator.

The results answer some questions about Vesta’s belt that had long been puzzling. Chief among them is the orientation of the belt with respect to the crater. The belt’s angle isn’t exactly what would be expected if it were caused by the Rheasilvia impact.

“The belt is askew,” Schultz said, “as if Vesta were making a fashion statement.”

These new experiments suggest that the crooked belt is the result of the angle of impact. An oblique impact causes the damage plane to be tilted with respect the crater. The orientation of Vesta’s belt sheds light on the nature of the impact. The researchers conclude that the object that created Rheasilvia came in at an angle less than 40 degrees, traveling at about 11,000 miles per hour.

“Vesta was lucky,” Schultz said. “If this collision had been straight on, there would have been one less large asteroid and only a family of fragments left behind.”

The research shows that even a glancing blow can have tremendous consequences.

“When big things happen to small bodies,” Schultz said, “it shakes them to the core.”

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:
https://news.brown.edu/articles/2014/11/vesta

Further reports about: Vesta asteroid belt collision damage equator experiments orientation propagate

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>