Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot, dense material surrounds O-type star with largest magnetic field known

23.09.2015

Findings have implications on evolution of massive stars

Observations using NASA's Chandra X-ray Observatory revealed that the unusually large magnetosphere around an O-type star called NGC 1624-2 contains a raging storm of extreme stellar winds and dense plasma that gobbles up X-rays before they can escape into space.


The magnetic field of the O-type star called NGC 1624-2 is unusually large for its class.

Credit: SOHO/[instrument] Consortium. SOHO is a project of international cooperation between ESA and NASA.

Findings from a team of researchers led by Florida Institute of Technology Assistant Professor Véronique Petit may help scientists better understand the lifecycle of certain massive stars, which are essential for creating metals needed for the formation of other stars and planets.

The findings will be published Sept. 23 in the journal Monthly Notices of the Royal Astronomical Society from Oxford University Press.

The massive O-type star - the hottest and brightest type of star in the universe - has the largest magnetosphere known in its class. Petit found NGC 1624-2's magnetic field traps gas trying to escape from the star and those gases absorb their own X-rays. The star's powerful stellar winds are three to five times faster and at least 100,000 times denser than our Sun's solar wind. Those winds grapple violently with the magnetic field and the trapped particles create the star's huge aura of hot, very dense plasma.

"The magnetic field isn't letting its stellar wind get away from the star, so you get these big flows that are forced to collide head on at the magnetic equator, creating gas shock-heated to 10 million Kelvin and plenty of X-rays," said Petit, who was part of a team of scientists that discovered the star in 2012. "But the magnetosphere is so large that nearly 80 percent of these X-rays get absorbed before being able to escape into free space and reach the Chandra telescope."

The magnetic field at the surface of NGC 1624-2 is 20,000 times stronger than at the surface of our Sun. If NGC 1624-2 was in the center of our solar system, loops of dense, hot plasma would extend nearly to the orbit of Venus.

Only one in 10 massive stars have a magnetic field. Unlike smaller stars like our sun that generate magnetism with an internal dynamo, magnetic fields in massive stars are "fossils" left over from some event in its early life, perhaps from a collision with another star.

Petit and her team, including Florida Tech graduate student Rebecca MacInnis, will know even more about the NGC 1624-2 in October after getting data back from the Hubble Space Telescope that will explore the dynamics of its trapped wind.

###

Other scientists who contributed to the research were: David Cohen, Swarthmore College; Gregg Wade, Royal Military College of Canada; Yael Nazé, L'Université de Liège; Stanley Owocki, University of Delaware; Jon Sundqvist, University of Delaware; Asif ud-Doula, Penn State Worthington Scranton; Alex Fullerton, Space Telescope Science Institute; Maurice Leutenegger, NASA/Goddard Space Flight Center and University of Maryland; Marc Gagné, West Chester University.

The paper will be available at midnight Sept. 23 here: http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv1741

Media Contact

Adam Lowenstein
adam@fit.edu
321-674-8964

http://www.fit.edu 

Adam Lowenstein | EurekAlert!

Further reports about: Delaware NGC Space Telescope Telescope X-rays dense escape magnetic field magnetosphere massive stars material

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>