Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot, dense material surrounds O-type star with largest magnetic field known

23.09.2015

Findings have implications on evolution of massive stars

Observations using NASA's Chandra X-ray Observatory revealed that the unusually large magnetosphere around an O-type star called NGC 1624-2 contains a raging storm of extreme stellar winds and dense plasma that gobbles up X-rays before they can escape into space.


The magnetic field of the O-type star called NGC 1624-2 is unusually large for its class.

Credit: SOHO/[instrument] Consortium. SOHO is a project of international cooperation between ESA and NASA.

Findings from a team of researchers led by Florida Institute of Technology Assistant Professor Véronique Petit may help scientists better understand the lifecycle of certain massive stars, which are essential for creating metals needed for the formation of other stars and planets.

The findings will be published Sept. 23 in the journal Monthly Notices of the Royal Astronomical Society from Oxford University Press.

The massive O-type star - the hottest and brightest type of star in the universe - has the largest magnetosphere known in its class. Petit found NGC 1624-2's magnetic field traps gas trying to escape from the star and those gases absorb their own X-rays. The star's powerful stellar winds are three to five times faster and at least 100,000 times denser than our Sun's solar wind. Those winds grapple violently with the magnetic field and the trapped particles create the star's huge aura of hot, very dense plasma.

"The magnetic field isn't letting its stellar wind get away from the star, so you get these big flows that are forced to collide head on at the magnetic equator, creating gas shock-heated to 10 million Kelvin and plenty of X-rays," said Petit, who was part of a team of scientists that discovered the star in 2012. "But the magnetosphere is so large that nearly 80 percent of these X-rays get absorbed before being able to escape into free space and reach the Chandra telescope."

The magnetic field at the surface of NGC 1624-2 is 20,000 times stronger than at the surface of our Sun. If NGC 1624-2 was in the center of our solar system, loops of dense, hot plasma would extend nearly to the orbit of Venus.

Only one in 10 massive stars have a magnetic field. Unlike smaller stars like our sun that generate magnetism with an internal dynamo, magnetic fields in massive stars are "fossils" left over from some event in its early life, perhaps from a collision with another star.

Petit and her team, including Florida Tech graduate student Rebecca MacInnis, will know even more about the NGC 1624-2 in October after getting data back from the Hubble Space Telescope that will explore the dynamics of its trapped wind.

###

Other scientists who contributed to the research were: David Cohen, Swarthmore College; Gregg Wade, Royal Military College of Canada; Yael Nazé, L'Université de Liège; Stanley Owocki, University of Delaware; Jon Sundqvist, University of Delaware; Asif ud-Doula, Penn State Worthington Scranton; Alex Fullerton, Space Telescope Science Institute; Maurice Leutenegger, NASA/Goddard Space Flight Center and University of Maryland; Marc Gagné, West Chester University.

The paper will be available at midnight Sept. 23 here: http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv1741

Media Contact

Adam Lowenstein
adam@fit.edu
321-674-8964

http://www.fit.edu 

Adam Lowenstein | EurekAlert!

Further reports about: Delaware NGC Space Telescope Telescope X-rays dense escape magnetic field magnetosphere massive stars material

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>