Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Historic Delft Experiments tests Einstein's 'God does not play dice' using quantum 'dice' made in Barcelona

22.10.2015

Random number generators developed at ICFO - The Institute of Photonic Sciences, by the groups of ICREA Professors Morgan W. Mitchell and Valerio Pruneri, played a critical role in the historic experiment was published online today in Nature by the group of Ronald Hanson at TU Delft. The experiment gives the strongest refutation to date of Albert Einstein's principle of "local realism," which says that the universe obeys laws, not chance, and that there is no communication faster than light.

As described in Hanson's group web the Delft experiment first "entangled" two electrons trapped inside two different diamond crystals, and then measured the electrons' orientations. In quantum theory entanglement is powerful and mysterious: mathematically the two electrons are described by a single "wave-function" that only specifies whether they agree or disagree, not which direction either spin points.


This is an artistic impression of the entanglement between electrons.

Credit: ICFO

In a mathematical sense, they lose their identities. "Local realism" attempts to explain the same phenomena with less mystery, saying that the particles must be pointing somewhere, we just don't know their directions until we measure them.

When measured, the Delft electrons did indeed appear individually random while agreeing very well. So well, in fact, that they cannot have had pre-existing orientations, as realism claims. This behaviour is only possible if the electrons communicate with each other, something that is very surprising for electrons trapped in different crystals. But here's the amazing part: in the Delft experiment, the diamonds were in different buildings, 1.3 km away from each other.

Moreover, the measurements were made so quickly that there wasn't time for the electrons to communicate, not even with signals traveling at the speed of light. This puts "local realism" in a very tight spot: if the electron orientations are real, the electrons must have communicated. But if they communicated, they must have done so faster than the speed of light. There's no way out, and local realism is disproven. Either God does play "dice" with the universe, or electron spins can talk to each other faster than the speed of light.

This amazing experiment called for extremely fast, unpredictable decisions about how to measure the electron orientations. If the measurements had been predictable, the electrons could have agreed in advance which way to point, simulating communications where there wasn't really any, a gap in the experimental proof known as a "loophole." To close this loophole, the Delft team turned to ICFO, who hold the record for the fastest quantum random number generators.

ICFO designed a pair of "quantum dice" for the experiment: a special version of their patented random number generation technology, including very fast "randomness extraction" electronics. This produced one extremely pure random bit for each measurement made in the Delft experiment. The bits were produced in about 100 ns, the time it takes light to travel just 30 meters, not nearly enough time for the electrons to communicate.

"Delft asked us to go beyond the state of the art in random number generation. Never before has an experiment required such good random numbers in such a short time." Says Carlos Abellán, a PhD student at ICFO and a co-author of the Delft study.

For the ICFO team, the participation in the Delft experiment was more than a chance to contribute to fundamental physics. Prof. Morgan Mitchell comments: "Working on this experiment pushed us to develop technologies that we can now apply to improve communications security and high-performance computing, other areas that require high-speed and high-quality random numbers."

With the help of ICFO's quantum random number generators, the Delft experiment gives a nearly perfect disproof of Einstein's world-view, in which "nothing travels faster than light" and "God does not play dice." At least one of these statements must be wrong. The laws that govern the Universe may indeed be a throw of the dice.

###

Reference

"Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres", http://nature.com/articles/doi:10.1038/nature15759

About ICFO

ICFO-The Institute of Photonic Sciences is a center of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists, and provide knowledge and technology transfer.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The institute hosts 300 professionals based in a dedicated building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO participates in a large number of projects and international networks of excellence and is host to the NEST program financed by Fundación Privada Cellex Barcelona. ICFO is a member of the Severo Ochoa Excelence program and a membre of the Barcelona Institute of Science and Technology.

Media Contact

Alina Hirschmann
alina.hirschmann@icfo.es
34-935-542-246

http://www.icfo.es 

Alina Hirschmann | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>