Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highest-energy cosmic rays have extragalactic origin

25.09.2017

Cosmic rays are atomic nuclei that travel through space at speeds close to that of light. Low-energy cosmic rays come from the Sun or from our own Galaxy, but the origin of the highest-energy particles has been the subject of debate ever since they were first discovered fifty years ago: do they come from our Galaxy or from distant extragalactic objects?

The question has now been settled by studying 30 000 cosmic-ray particles with energies a million times greater than those of the protons accelerated in the LHC . They were detected from 2004 to 2016 at the largest cosmic ray observatory ever built, the Pierre Auger Observatory in Argentina.


The detectors are tanks filled with 12 tonnes of pure water, which are used to detect particles from air showers, cascades of secondary particles produced when cosmic rays enter Earth's atmosphere. As they travel through the tanks of water, the secondary particles produce a flash of light caused by the Cherenkov effect. The Pierre Auger Observatory in Argentina is the world's largest cosmic ray detector. It is named after the French physicist who was the first to observe air showers, in 1938.

Credit: Céline ANAYA-GAUTIER/CNRS Photothèque

Analysis of the arrival directions of the particles showed that at such energies the flux of cosmic rays coming from a region of the sky located 120 degrees from the galactic center is approximately 6% higher than if the flux were perfectly uniform.

This direction cannot be associated with potential sources in either the galactic plane or galactic center, providing the first convincing evidence that these cosmic rays have an extragalactic origin.

The flux of these very high-energy cosmic rays (exceeding 2 joules) is about one particle per square kilometer per year . When the cosmic rays collide with molecules in the upper atmosphere, they create cascades of over 10 billion secondary particles, known as air showers, which can cover an area exceeding 40 square kilometers by the time they reach the ground.

The Pierre Auger Observatory detects some of these secondary particles (electrons, photons and muons) by means of an array of 1 600 detectors, i.e. tanks of pure water spaced 1.5 kilometers apart and covering 3 000 square kilometers in the Argentinian pampas, an area slightly larger than Luxembourg. By comparing the arrival times of particles at the different detectors it is possible to determine where the cosmic ray particle that produced the air shower came from.

This discovery clearly indicates an extragalactic origin for these cosmic rays, since there is a probability of only one in five million that the pattern observed in the sky is due to chance. However, the study has not yet succeeded in locating the sources precisely. This is because the region where cosmic rays are brightest covers a large part of the sky, where the number of galaxies is relatively high. In addition, our Galaxy's magnetic field deflects the paths of these charged particles , making it more difficult to locate their sources.

Some cosmic rays have even higher energies than those focused on in this survey. They have the disadvantage of being even more unusual, but also the advantage that they are not as deflected by the magnetic field of our own Galaxy. Their direction of arrival may therefore more accurately indicate the region where they were produced.

In 2007, an earlier study pointed to a correlation between active galactic nuclei and the arrival directions of the highest-energy cosmic rays then detected , but this correlation subsequently turned out to be not very significant. Research is currently being carried out on a much larger sample of ultrahigh-energy cosmic rays, and may provide some answers. At the same time, an upgrade program is underway at the Pierre Auger Observatory, which should make it easier to identify the sources.

400 scientists from 18 countries take part in the Pierre Auger Collaboration, which develops and runs the observatory of the same name. The CNRS is the observatory's principal French funding agency. The following French laboratories contribute to the collaboration:

  • the Institut de Physique Nucléaire d'Orsay (CNRS/Université Paris-Sud) ;
  • the Laboratoire de Physique Nucléaire et des Hautes Energies (CNRS/UPMC/Université Paris Diderot) ;
  • the Laboratoire de Physique Subatomique et de Cosmologie (CNRS/Université Grenoble Alpes/ Grenoble INP).

Media Contact

Veronique Etienne
veronique.etienne@cnrs.fr
33-144-965-137

http://www.cnrs.fr 

Veronique Etienne | EurekAlert!

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>