Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-speed march through a layer of graphene

05.10.2015

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists at the Laboratory for Attosecond Physics (LAP) of the Max Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität (LMU) have made simulations of processes that take place when electrons in a layer of carbon atoms interact with strong laser light.


A laser pulse hits a two-dimensional layer of graphene and dislocates the electrons of the carbon ions.

Graphic: Christian Hackenberger

The purpose of these simulations is to gain insight into light-matter-interactions in the microcosm. A better understanding of the underlying physical processes could lead to light-wave driven electronics that would operate at light frequencies, which is a hundred thousand times faster than state-of-the-art technologies. Graphene with its exceptional properties is considered to be very well suited as an example system for prototype experiments.

The closer we observe the motion of electrons, the better we understand their interaction with light. Many phenomena that arise in condensed matter due to strong-field light-matter interaction are not yet fully understood.

As the underlying processes occur within femto- or even attoseconds, it is difficult to access this intra-atomic cosmos: a femtosecond is a millionth of a billionth of a second; an attosecond is even a thousand times shorter. Experimental methods that shall cope with this challenge are at a development stage. However, it is possible to investigate these processes with the help of numerical simulations.

The team of scientists from LAP and Georgia State University has calculated what happens to electrons in graphene interacting with an intense laser pulse.

The laser field excites and displaces electrons, changing thus the charge density distribution. During this process, an extremely short electron pulse is scattered off the probe. The diffraction map of these matter waves reflects how the electron density distribution inside the graphene layer has been altered because of the laser pulse.

These simulations have revealed complex relations between the excitation of valence electrons by light and their subsequent ultrafast motion inside and between the carbon atoms in the graphene layer. Valence electrons are weakly bound and shared among neighbouring atoms. The scientists investigated their motion by identifying microscopic volumes that represent various chemical bonds and analysing the electric charge contained in these volumes.

During a laser pulse, there is a significant redistribution of the charge; at the same time, the displacement of the electrons caused by the electromagnetic field of the laser pulse is very small, less than a picometre (10 to the minus 12 m). In addition to that, the calculations showed that the light-induced electric current has an inhomogeneous microscopic distribution, flowing along the chemical bonds between the carbon atoms.

These simulations should assist new ultrafast electron diffraction measurements. “We will possibly detect new phenomena, and perhaps observe deviations from our predictions”, project leader Vladislav Yakovlev points out. “But we are pretty sure that quite some fundamental physics is waiting to be observed in challenging but feasible atomic-scale measurements.” [Thorsten Naeser/Olivia Meyer-Streng]

Original Publication:

Vladislav S. Yakovlev, Mark I. Stockman, Ferenc Krausz & Peter Baum
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Scientific Reports, 28. September 2015, doi: 10.1038/srep14581

Contact:

Dr. Peter Baum
Max Planck Institute of Quantum Optics
Ludwig-Maximilians-Universität Munich
Am Coulombwall 1, 85748 Garching
Phone: +49 (0)89 / 289 - 14102
E-mail: peter.baum@lmu.de

Dr. Vladislav Yakovlev
Center for Nano-Optics
Georgia State University
Atlanta, GA 30303, USA
Phone: +1-404-413-6099
E-mail: vyakovlev@gsu.edu

Prof. Dr. Ferenc Krausz
Chair of Experimental Physics,
Ludwig-Maximilians-Universität Munich
Laboratory for Attosecond Physics
Director at Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 - 600
Telefax: +49 (0)89 32 905 - 649
E-mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>