Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-speed march through a layer of graphene

05.10.2015

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists at the Laboratory for Attosecond Physics (LAP) of the Max Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität (LMU) have made simulations of processes that take place when electrons in a layer of carbon atoms interact with strong laser light.


A laser pulse hits a two-dimensional layer of graphene and dislocates the electrons of the carbon ions.

Graphic: Christian Hackenberger

The purpose of these simulations is to gain insight into light-matter-interactions in the microcosm. A better understanding of the underlying physical processes could lead to light-wave driven electronics that would operate at light frequencies, which is a hundred thousand times faster than state-of-the-art technologies. Graphene with its exceptional properties is considered to be very well suited as an example system for prototype experiments.

The closer we observe the motion of electrons, the better we understand their interaction with light. Many phenomena that arise in condensed matter due to strong-field light-matter interaction are not yet fully understood.

As the underlying processes occur within femto- or even attoseconds, it is difficult to access this intra-atomic cosmos: a femtosecond is a millionth of a billionth of a second; an attosecond is even a thousand times shorter. Experimental methods that shall cope with this challenge are at a development stage. However, it is possible to investigate these processes with the help of numerical simulations.

The team of scientists from LAP and Georgia State University has calculated what happens to electrons in graphene interacting with an intense laser pulse.

The laser field excites and displaces electrons, changing thus the charge density distribution. During this process, an extremely short electron pulse is scattered off the probe. The diffraction map of these matter waves reflects how the electron density distribution inside the graphene layer has been altered because of the laser pulse.

These simulations have revealed complex relations between the excitation of valence electrons by light and their subsequent ultrafast motion inside and between the carbon atoms in the graphene layer. Valence electrons are weakly bound and shared among neighbouring atoms. The scientists investigated their motion by identifying microscopic volumes that represent various chemical bonds and analysing the electric charge contained in these volumes.

During a laser pulse, there is a significant redistribution of the charge; at the same time, the displacement of the electrons caused by the electromagnetic field of the laser pulse is very small, less than a picometre (10 to the minus 12 m). In addition to that, the calculations showed that the light-induced electric current has an inhomogeneous microscopic distribution, flowing along the chemical bonds between the carbon atoms.

These simulations should assist new ultrafast electron diffraction measurements. “We will possibly detect new phenomena, and perhaps observe deviations from our predictions”, project leader Vladislav Yakovlev points out. “But we are pretty sure that quite some fundamental physics is waiting to be observed in challenging but feasible atomic-scale measurements.” [Thorsten Naeser/Olivia Meyer-Streng]

Original Publication:

Vladislav S. Yakovlev, Mark I. Stockman, Ferenc Krausz & Peter Baum
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Scientific Reports, 28. September 2015, doi: 10.1038/srep14581

Contact:

Dr. Peter Baum
Max Planck Institute of Quantum Optics
Ludwig-Maximilians-Universität Munich
Am Coulombwall 1, 85748 Garching
Phone: +49 (0)89 / 289 - 14102
E-mail: peter.baum@lmu.de

Dr. Vladislav Yakovlev
Center for Nano-Optics
Georgia State University
Atlanta, GA 30303, USA
Phone: +1-404-413-6099
E-mail: vyakovlev@gsu.edu

Prof. Dr. Ferenc Krausz
Chair of Experimental Physics,
Ludwig-Maximilians-Universität Munich
Laboratory for Attosecond Physics
Director at Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 - 600
Telefax: +49 (0)89 32 905 - 649
E-mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>