Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Power Laser Spinoff Proves Versatility Is Strength

20.04.2015

Since lasers were invented in 1960, they have penetrated countless scientific, industrial and recreational fields: from eye surgery to DVD players, from cutting steel to triggering ignition in missile stages.

That last use is a target market for Alfalight, a University of Wisconsin-Madison spinoff that set out in 1999 to use patented technology to make lasers for the telecommunications industry. At the time, “a tremendous need was forecast for these high-power, reliable lasers in telecom,” says Ron Bechtold, Alfalight’s vice president of marketing and sales.


David Tenenbaum/UW–Madison

A green laser module, together with control electronics, at the Madison lab of Alfalight, a spinoff from UW-Madison that makes high-power lasers. The company makes rugged packages of lasers, optics, and electronic components in a clean room at its Madison factory.

Lasers emit a coherent, single-color beam of light that can travel great distances. But as power output rises, the large electric current that drives the laser can create enough heat to destroy it.

In the 1990s, two professors of electrical and computer engineering at UW–Madison, Luke Mawst and Dan Botez, patented inventions that made great strides in making high-power lasers more efficient and robust. In 1999, with grad student Thomas Earles, they founded Alfalight in Madison and licensed their patents from the Wisconsin Alumni Research Foundation.

Today, Alfalight’s 16 employees include engineers and physicists. About half of them have degrees from UW-Madison.

The company name derives from one of its key advances: lasers that are aluminum (Al) free. “Not having aluminum in the cavity allows the generation of huge amounts of optical power without damaging the end facet of the laser where the light emerges,” says Rob Williamson, director of product and business development.

Aluminum is easily oxidized into a compound that does not conduct electricity, Williamson says. “By eliminating aluminum, you get lower resistance, so more of the current turns into light, which raises efficiency.”

It also reduces waste heat, which can otherwise pose “a huge problem,” says Williamson, who has a Ph.D. in physics from UW-Madison. The light source in the Alfalight lasers produces as much heat as a similar area at the surface of the sun.

Because the lasers are built with the same techniques used for semiconductors, they are inherently tough and reliable, Williamson says.

Back at the turn of the century, Alfalight’s revolutionary laser technology seemed perfectly suited to the telecom market — except that the market vanished while Alfalight readied its production. “As a company, we were left with a good technology and good people, and it was time to think: What market can we serve?” says Williamson.

Starting in 2003, Alfalight began selling to military and industrial markets. In 2009, having survived the Great Recession, it began developing a “non-lethal ocular disruptor,” which delivers a blast of green laser light that temporarily overwhelms the retina in the eye.

The disruptor is designed as a non-lethal option for dealing with speeding vehicles in war zones. “The typical scenario is someone racing toward a checkpoint,” says Williamson. “Is it a guy who is racing to the hospital because his wife is about to give birth? Or is he delivering a bomb? This is eye-safe, but it sends a very clear signal: ‘You better stop or something worse can happen.’”

In March 2013, the company’s semiconductor laser fabrication wing and technology were sold to Compound Photonics, a Phoenix firm that makes components for solid-state projectors. Compound Photonics credits the technology it bought from Alfalight as key to a hot new product: a high-definition, efficient projector that could convert a smartphone into a miniature movie projector.

Overall, Alfalight’s story is “interesting and typical for startups,” says Bechtold. “Originally we had an idea that came out of UW-Madison, and we went after a very exciting market, but it did not work out. So we had investment, talent and technology, and we went looking for a new market.”

Earles is now working with Alfalight’s other two founders on a new laser-related startup.

Speed is one of the key lessons he takes away from Alfalight. “When you are with a startup company, every day matters. The College of Engineering provided access to equipment to do early stage product development work at the university. This was critical to making technical progress until our own facilities were built.”

Earles adds that speed can be as critical as money in getting startups on their feet.
Today, Alfalight is in the final running for major contracts for the ocular disruptor and the missile-ignition technology. “The challenge is to grow sustainably, carefully,” says Williamson. “You can’t grow too fast, and you can’t grow too slowly.”

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Rob Williamson | newswise
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>