Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Power Laser Spinoff Proves Versatility Is Strength

20.04.2015

Since lasers were invented in 1960, they have penetrated countless scientific, industrial and recreational fields: from eye surgery to DVD players, from cutting steel to triggering ignition in missile stages.

That last use is a target market for Alfalight, a University of Wisconsin-Madison spinoff that set out in 1999 to use patented technology to make lasers for the telecommunications industry. At the time, “a tremendous need was forecast for these high-power, reliable lasers in telecom,” says Ron Bechtold, Alfalight’s vice president of marketing and sales.


David Tenenbaum/UW–Madison

A green laser module, together with control electronics, at the Madison lab of Alfalight, a spinoff from UW-Madison that makes high-power lasers. The company makes rugged packages of lasers, optics, and electronic components in a clean room at its Madison factory.

Lasers emit a coherent, single-color beam of light that can travel great distances. But as power output rises, the large electric current that drives the laser can create enough heat to destroy it.

In the 1990s, two professors of electrical and computer engineering at UW–Madison, Luke Mawst and Dan Botez, patented inventions that made great strides in making high-power lasers more efficient and robust. In 1999, with grad student Thomas Earles, they founded Alfalight in Madison and licensed their patents from the Wisconsin Alumni Research Foundation.

Today, Alfalight’s 16 employees include engineers and physicists. About half of them have degrees from UW-Madison.

The company name derives from one of its key advances: lasers that are aluminum (Al) free. “Not having aluminum in the cavity allows the generation of huge amounts of optical power without damaging the end facet of the laser where the light emerges,” says Rob Williamson, director of product and business development.

Aluminum is easily oxidized into a compound that does not conduct electricity, Williamson says. “By eliminating aluminum, you get lower resistance, so more of the current turns into light, which raises efficiency.”

It also reduces waste heat, which can otherwise pose “a huge problem,” says Williamson, who has a Ph.D. in physics from UW-Madison. The light source in the Alfalight lasers produces as much heat as a similar area at the surface of the sun.

Because the lasers are built with the same techniques used for semiconductors, they are inherently tough and reliable, Williamson says.

Back at the turn of the century, Alfalight’s revolutionary laser technology seemed perfectly suited to the telecom market — except that the market vanished while Alfalight readied its production. “As a company, we were left with a good technology and good people, and it was time to think: What market can we serve?” says Williamson.

Starting in 2003, Alfalight began selling to military and industrial markets. In 2009, having survived the Great Recession, it began developing a “non-lethal ocular disruptor,” which delivers a blast of green laser light that temporarily overwhelms the retina in the eye.

The disruptor is designed as a non-lethal option for dealing with speeding vehicles in war zones. “The typical scenario is someone racing toward a checkpoint,” says Williamson. “Is it a guy who is racing to the hospital because his wife is about to give birth? Or is he delivering a bomb? This is eye-safe, but it sends a very clear signal: ‘You better stop or something worse can happen.’”

In March 2013, the company’s semiconductor laser fabrication wing and technology were sold to Compound Photonics, a Phoenix firm that makes components for solid-state projectors. Compound Photonics credits the technology it bought from Alfalight as key to a hot new product: a high-definition, efficient projector that could convert a smartphone into a miniature movie projector.

Overall, Alfalight’s story is “interesting and typical for startups,” says Bechtold. “Originally we had an idea that came out of UW-Madison, and we went after a very exciting market, but it did not work out. So we had investment, talent and technology, and we went looking for a new market.”

Earles is now working with Alfalight’s other two founders on a new laser-related startup.

Speed is one of the key lessons he takes away from Alfalight. “When you are with a startup company, every day matters. The College of Engineering provided access to equipment to do early stage product development work at the university. This was critical to making technical progress until our own facilities were built.”

Earles adds that speed can be as critical as money in getting startups on their feet.
Today, Alfalight is in the final running for major contracts for the ocular disruptor and the missile-ignition technology. “The challenge is to grow sustainably, carefully,” says Williamson. “You can’t grow too fast, and you can’t grow too slowly.”

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Rob Williamson | newswise
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>