Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing Bone in Space: UCLA and CASIS Announce Pioneering Collaborative Study to Test Therapy for Bone Loss on the International Space Station

22.01.2015

UCLA has received grant funding from the Center for the Advancement of Science in Space (CASIS) to lead a research mission that will send rodents to the International Space Station (ISS). The mission will allow astronauts on the space station and scientists on Earth to test a potential new therapy for accelerating bone growth in humans.

The research will be led by Dr. Chia Soo, a UCLA professor of plastic and reconstructive surgery and orthopaedic surgery, who is member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. Soo is also research director for UCLA Operation Mend, which provides medical care for wounded warriors. The study will test the ability of a bone-forming molecule called NELL-1 to direct stem cells to induce bone formation and prevent bone degeneration.


NASA

The International Space Station (as photographed by an STS-134 crew member on the space shuttle Endeavour, after the station and shuttle began their post-undocking relative separation).

Other members of the UCLA research team are Dr. Kang Ting, a professor in dentistry who discovered NELL-1 and is leading efforts to translate NELL-1 therapy to humans, Dr. Ben Wu, a professor of bioengineering who modified the NELL-1 molecule to make useful for treating osteoporosis, and Dr. Jin Hee Kwak, an assistant professor of dentistry who will manage daily operations.

Based on results of previous studies supported by the NIH, the UCLA-ISS team will begin ground operations in early 2015. They hope that the study will provide new insights into the prevention of bone loss or osteoporosis as well as the regeneration of massive bone defects that can occur in wounded military personnel. Osteoporosis is a significant public health problem commonly associated with “skeletal disuse” conditions such as immobilization, stroke, cerebral palsy, muscular dystrophy, spinal cord injury and jaw resorption after tooth loss.

“NELL-1 holds tremendous hope, not only for preventing bone loss but one day even restoring healthy bone,” Ting said. “For patients who are bed-bound and suffering from bone loss, it could be life-changing.”

The UCLA team will oversee the ground operations of the mission in tandem with a flight operation coordinated by CASIS and NASA.

“A group of 40 rodents will be sent to the International Space Station U.S. National Laboratory onboard the SpaceX Dragon capsule, where they will live for two months in a microgravity environment during the first ever test of NELL-1 in space,” said Dr. Julie Robinson, NASA’s chief scientist for the International Space Station program at the Johnson Space Center.

“CASIS is proud to work alongside UCLA in an effort to promote the station as a viable platform for bone loss inquiry,” said Warren Bates, director of portfolio management for CASIS. “Through investigations like this, we hope to make profound discoveries and enable the development of therapies to counteract bone loss ailments common in humans.”

Prolonged space flights induce extreme changes in bone and organ systems that cannot be replicated on Earth.

“Besides testing the limits of NELL-1’s robust bone-producing effects, this mission will provide new insights about bone biology and could uncover important clues for curing diseases such as osteoporosis," Wu said.

“NIH has been pleased to work with NASA and CASIS to encourage the use of the International Space Station as a unique microgravity environment that can test innovative hypotheses that will benefit human health on Earth,” said Dr. Joan A. McGowan, director of the division of musculoskeletal diseases at the National Institute of Arthritis and Musculoskeletal and Skin Diseases, part of the NIH.

“This research has enormous translational application for astronauts in space flight and for patients on Earth who have osteoporosis or other bone-loss problems from disease, illness or trauma,” Soo said. “We very much appreciate the dedicated review staff at CASIS and the Center for Scientific Review, the portal for NIH grant applications, who made this ISS-NIH effort possible.”

The research is supported by grants from the Center for the Advancement of Science in Space and National Institutes of Health. Additional funding and support are provided by the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, the UCLA School of Dentistry, UCLA Department of Orthopaedic Surgery and UCLA Orthopaedic Hospital Research Center.

About Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Comprehensive Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science.

To learn more about the center, visit http://www.stemcell.ucla.edu 

About Operation Mend

UCLA Operation Mend is a groundbreaking program that provides returning military personnel from Iraq and Afghanistan, and service members wounded in training for battle, who suffer from severe facial and other medical injuries access to the nation's top plastic and reconstructive surgeons, as well as comprehensive medical and mental-health support for the wounded and their families.

To learn more about Operation Mend, visit http://operationmend.ucla.edu 

About CASIS

About CASIS: The Center for the Advancement of Science in Space (CASIS) was selected by NASA in July 2011 to maximize use of the International Space Station (ISS) U.S. National Laboratory through 2020. CASIS is dedicated to supporting and accelerating innovations and new discoveries that will enhance the health and wellbeing of people and our planet.

For more information, visit www.iss-casis.org 

Peter Bracke | newswise

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>