Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing Bone in Space: UCLA and CASIS Announce Pioneering Collaborative Study to Test Therapy for Bone Loss on the International Space Station

22.01.2015

UCLA has received grant funding from the Center for the Advancement of Science in Space (CASIS) to lead a research mission that will send rodents to the International Space Station (ISS). The mission will allow astronauts on the space station and scientists on Earth to test a potential new therapy for accelerating bone growth in humans.

The research will be led by Dr. Chia Soo, a UCLA professor of plastic and reconstructive surgery and orthopaedic surgery, who is member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. Soo is also research director for UCLA Operation Mend, which provides medical care for wounded warriors. The study will test the ability of a bone-forming molecule called NELL-1 to direct stem cells to induce bone formation and prevent bone degeneration.


NASA

The International Space Station (as photographed by an STS-134 crew member on the space shuttle Endeavour, after the station and shuttle began their post-undocking relative separation).

Other members of the UCLA research team are Dr. Kang Ting, a professor in dentistry who discovered NELL-1 and is leading efforts to translate NELL-1 therapy to humans, Dr. Ben Wu, a professor of bioengineering who modified the NELL-1 molecule to make useful for treating osteoporosis, and Dr. Jin Hee Kwak, an assistant professor of dentistry who will manage daily operations.

Based on results of previous studies supported by the NIH, the UCLA-ISS team will begin ground operations in early 2015. They hope that the study will provide new insights into the prevention of bone loss or osteoporosis as well as the regeneration of massive bone defects that can occur in wounded military personnel. Osteoporosis is a significant public health problem commonly associated with “skeletal disuse” conditions such as immobilization, stroke, cerebral palsy, muscular dystrophy, spinal cord injury and jaw resorption after tooth loss.

“NELL-1 holds tremendous hope, not only for preventing bone loss but one day even restoring healthy bone,” Ting said. “For patients who are bed-bound and suffering from bone loss, it could be life-changing.”

The UCLA team will oversee the ground operations of the mission in tandem with a flight operation coordinated by CASIS and NASA.

“A group of 40 rodents will be sent to the International Space Station U.S. National Laboratory onboard the SpaceX Dragon capsule, where they will live for two months in a microgravity environment during the first ever test of NELL-1 in space,” said Dr. Julie Robinson, NASA’s chief scientist for the International Space Station program at the Johnson Space Center.

“CASIS is proud to work alongside UCLA in an effort to promote the station as a viable platform for bone loss inquiry,” said Warren Bates, director of portfolio management for CASIS. “Through investigations like this, we hope to make profound discoveries and enable the development of therapies to counteract bone loss ailments common in humans.”

Prolonged space flights induce extreme changes in bone and organ systems that cannot be replicated on Earth.

“Besides testing the limits of NELL-1’s robust bone-producing effects, this mission will provide new insights about bone biology and could uncover important clues for curing diseases such as osteoporosis," Wu said.

“NIH has been pleased to work with NASA and CASIS to encourage the use of the International Space Station as a unique microgravity environment that can test innovative hypotheses that will benefit human health on Earth,” said Dr. Joan A. McGowan, director of the division of musculoskeletal diseases at the National Institute of Arthritis and Musculoskeletal and Skin Diseases, part of the NIH.

“This research has enormous translational application for astronauts in space flight and for patients on Earth who have osteoporosis or other bone-loss problems from disease, illness or trauma,” Soo said. “We very much appreciate the dedicated review staff at CASIS and the Center for Scientific Review, the portal for NIH grant applications, who made this ISS-NIH effort possible.”

The research is supported by grants from the Center for the Advancement of Science in Space and National Institutes of Health. Additional funding and support are provided by the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, the UCLA School of Dentistry, UCLA Department of Orthopaedic Surgery and UCLA Orthopaedic Hospital Research Center.

About Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA's Jonsson Comprehensive Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science.

To learn more about the center, visit http://www.stemcell.ucla.edu 

About Operation Mend

UCLA Operation Mend is a groundbreaking program that provides returning military personnel from Iraq and Afghanistan, and service members wounded in training for battle, who suffer from severe facial and other medical injuries access to the nation's top plastic and reconstructive surgeons, as well as comprehensive medical and mental-health support for the wounded and their families.

To learn more about Operation Mend, visit http://operationmend.ucla.edu 

About CASIS

About CASIS: The Center for the Advancement of Science in Space (CASIS) was selected by NASA in July 2011 to maximize use of the International Space Station (ISS) U.S. National Laboratory through 2020. CASIS is dedicated to supporting and accelerating innovations and new discoveries that will enhance the health and wellbeing of people and our planet.

For more information, visit www.iss-casis.org 

Peter Bracke | newswise

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>