Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ground-breaking research could challenge underlying principles of physics


An international team of physicists has published ground-breaking research on the decay of subatomic particles called kaons - which could change how scientists understand the formation of the universe.

Professor Christopher Sachrajda, from the Southampton Theory Astrophysics and Gravity Research Centre at the University of Southampton, has helped to devise the first calculation of how the behaviour of kaons differs when matter is swapped out for antimatter, known as direct "CP" symmetry violation.

This is the IBM Blue Gene/Q supercomputer at Brookhaven National Laboratory, one of the machines used in the calculation.

Credit: Brookhaven National Laboratory

Should the calculation not match experimental results, it would be conclusive evidence of new, unknown phenomena that lie outside of the Standard Model--physicists' present understanding of the fundamental particles and the forces between them.

The current result, reported in Physical Review Letters, does not yet indicate such a difference between experiment and theory, but scientists expect the precision of the calculation to improve dramatically now that they've proven they can tackle the task.

The target of the present calculation is a phenomenon that is particularly elusive: a one-part-in-a-million difference between the matter and antimatter decay strengths. The calculation determines the size of the symmetry violating effect as predicted by the Standard Model.

Professor Sachrajda, said: "It is particularly important to compare Standard Model predictions for tiny subtle effects, such as the matter-antimatter asymmetry in kaon decays, with experimental measurements. The small size of the effects increases the chance that new, as yet not understood, phenomena may be uncovered in such a comparison. This motivates our quest for ever more precise theoretical predictions, a quest being made possible by new theoretical developments as well as access to more powerful supercomputers."

Results from the first, less difficult, part of this calculation were reported by the same group in 2012. However, it is only now, with completion of the second part of this calculation--which required more than 200 million core processing hours on supercomputers --that a comparison with the measured size of direct CP violation can be made.

Physicists' present understanding of the universe requires that particles and their antiparticles (which are identical but have opposite charges) behave differently. Only with matter-antimatter asymmetry can they hope to explain why the universe, which was created with equal parts of matter and antimatter, is filled mostly with matter today.

The first experimental evidence for the matter-antimatter asymmetry, known as CP violation, was discovered in 1964 at the Brookhaven National Laboratory in the United States. This was built upon to a more accurate degree in 2000, to uncover direct CP violation - a tiny effect which only affects a few particle decays in a million. Although the Standard Model does successfully relate the matter-antimatter asymmetries, this is insufficient to explain the dominance of matter over antimatter in the universe today.

"This suggests that a new mechanism must be responsible for the preponderance of matter of which we are made," said Christopher Kelly, a member of the team from the RIKEN BNL Research Center (RBRC). "This one-part-per-million, direct CP violation may be a good place to first see it. The approximate agreement between this new calculation and the 2000 experimental results suggests that we need to look harder, which is exactly what the team performing this calculation plans to do."


The calculation was carried out on the Blue Gene/Q supercomputers at the RIKEN BNL Research Center (RBRC), at Brookhaven National Laboratory, at the Argonne Leadership Class Computing Facility at Argonne National Laboratory, and at the DiRAC facility at the University of Edinburgh. It was funded by the U.S. Department of Energy's Office of Science (HEP), by the RIKEN Laboratory of Japan, and the UK Science and Technology Facilities Council.

Media Contact

Glenn Harris


Glenn Harris | EurekAlert!

Further reports about: RIKEN asymmetry matter-antimatter asymmetry physics

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>