Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ground-breaking research could challenge underlying principles of physics

23.11.2015

An international team of physicists has published ground-breaking research on the decay of subatomic particles called kaons - which could change how scientists understand the formation of the universe.

Professor Christopher Sachrajda, from the Southampton Theory Astrophysics and Gravity Research Centre at the University of Southampton, has helped to devise the first calculation of how the behaviour of kaons differs when matter is swapped out for antimatter, known as direct "CP" symmetry violation.


This is the IBM Blue Gene/Q supercomputer at Brookhaven National Laboratory, one of the machines used in the calculation.

Credit: Brookhaven National Laboratory

Should the calculation not match experimental results, it would be conclusive evidence of new, unknown phenomena that lie outside of the Standard Model--physicists' present understanding of the fundamental particles and the forces between them.

The current result, reported in Physical Review Letters, does not yet indicate such a difference between experiment and theory, but scientists expect the precision of the calculation to improve dramatically now that they've proven they can tackle the task.

The target of the present calculation is a phenomenon that is particularly elusive: a one-part-in-a-million difference between the matter and antimatter decay strengths. The calculation determines the size of the symmetry violating effect as predicted by the Standard Model.

Professor Sachrajda, said: "It is particularly important to compare Standard Model predictions for tiny subtle effects, such as the matter-antimatter asymmetry in kaon decays, with experimental measurements. The small size of the effects increases the chance that new, as yet not understood, phenomena may be uncovered in such a comparison. This motivates our quest for ever more precise theoretical predictions, a quest being made possible by new theoretical developments as well as access to more powerful supercomputers."

Results from the first, less difficult, part of this calculation were reported by the same group in 2012. However, it is only now, with completion of the second part of this calculation--which required more than 200 million core processing hours on supercomputers --that a comparison with the measured size of direct CP violation can be made.

Physicists' present understanding of the universe requires that particles and their antiparticles (which are identical but have opposite charges) behave differently. Only with matter-antimatter asymmetry can they hope to explain why the universe, which was created with equal parts of matter and antimatter, is filled mostly with matter today.

The first experimental evidence for the matter-antimatter asymmetry, known as CP violation, was discovered in 1964 at the Brookhaven National Laboratory in the United States. This was built upon to a more accurate degree in 2000, to uncover direct CP violation - a tiny effect which only affects a few particle decays in a million. Although the Standard Model does successfully relate the matter-antimatter asymmetries, this is insufficient to explain the dominance of matter over antimatter in the universe today.

"This suggests that a new mechanism must be responsible for the preponderance of matter of which we are made," said Christopher Kelly, a member of the team from the RIKEN BNL Research Center (RBRC). "This one-part-per-million, direct CP violation may be a good place to first see it. The approximate agreement between this new calculation and the 2000 experimental results suggests that we need to look harder, which is exactly what the team performing this calculation plans to do."

###

The calculation was carried out on the Blue Gene/Q supercomputers at the RIKEN BNL Research Center (RBRC), at Brookhaven National Laboratory, at the Argonne Leadership Class Computing Facility at Argonne National Laboratory, and at the DiRAC facility at the University of Edinburgh. It was funded by the U.S. Department of Energy's Office of Science (HEP), by the RIKEN Laboratory of Japan, and the UK Science and Technology Facilities Council.

Media Contact

Glenn Harris
G.Harris@soton.ac.uk
44-023-805-93212

 @unisouthampton

http://www.southampton.ac.uk/ 

Glenn Harris | EurekAlert!

Further reports about: RIKEN asymmetry matter-antimatter asymmetry physics

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>