Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giant Magnetic Fields in the Universe


Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the diameter of the Milky Way, they host a large number of such stellar systems, along with hot gas, magnetic fields, charged particles, embedded in large haloes of dark matter, the composition of which is unknown.

Radio map of the relic at the outskirts of the galaxy cluster CIZA J2242+53 in a distance of about two billion light years, observed with the Effelberg radio telescope at 3 cm wavelength

Maja Kierdorf et al., 2017, A&A 600, A18

The 100-m radio telescope near Bad Münstereifel-Effelsberg. The observations of polarized radio emission from galaxy clusters were performed with this telescope at wavelengths of 3 and 6 cm.

Norbert Junkes/MPIfR

Collision of galaxy clusters leads to a shock compression of the hot cluster gas and of the magnetic fields. The resulting arc-like features are called “relics” and stand out by their radio and X-ray emission. Since their discovery in 1970 with a radio telescope near Cambridge/UK, relics were found in about 70 galaxy clusters so far, but many more are likely to exist. They are messengers of huge gas flows that continuously shape the structure of the universe.

Radio waves are excellent tracers of relics. The compression of magnetic fields orders the field lines, which also affects the emitted radio waves. More precisely, the emission becomes linearly polarized. This effect was detected in four galaxy clusters by a team of researchers at the Max Planck Institute for Radio Astronomy in Bonn (MPIfR), the Argelander Institute for Radio Astronomy at the University of Bonn (AIfA), the Thuringia State Observatory at Tautenburg (TLS), and colleagues in Cambridge/USA.

They used the MPIfR’s 100-m radio telescope near Bad Münstereifel-Effelsberg in the Eifel hills at wavelengths of 3 cm and 6 cm. Such short wavelengths are advantageous because the polarized emission is not diminished when passing through the galaxy cluster and our Milky Way. Fig.1 shows the most spectacular case.

Linearly polarized relics were found in the four galaxy clusters observed, in one case for the first time. The magnetic fields are of similar strength as in our Milky Way, while the measured degrees of polarization of up to 50% are exceptionally high, indicating that the emission originates in an extremely ordered magnetic field. “We discovered the so far largest ordered magnetic fields in the universe, extending over 5-6 million light years”, says Maja Kierdorf from MPIfR Bonn, the project leader and first author of the publication.

She also wrote her Master Thesis at Bonn University on this subject. For this project, co-author Matthias Hoeft from TLS Tautenburg developed a method that permits to determine the “Mach number”, i.e. the ratio of the relative velocity between the colliding gas clouds and the local sound speed, using the observed degree of polarization. The resulting Mach numbers of about two tell us that the galaxy clusters collide with velocities of about 2000 km/s, which is faster than previously derived from measurements of the X-ray emission.

The new Effelsberg telescope observations show that the polarization plane of the radio emission from the relics turns with wavelength. This “Faraday rotation effect”, named after the English physicist Michael Faraday, indicates that ordered magnetic fields also exist between the clusters and, together with hot gas, cause the rotation of the polarization plane. Such magnetic fields may be even larger than the clusters themselves.

„The Effelsberg radio telescope proved again to be an ideal instrument to detect magnetic fields in the universe“, emphasizes co-author Rainer Beck from MPIfR who works on this topic for more than 40 years. “Now we can systematically search for ordered magnetic fields in galaxy clusters using polarized radio waves.”

The research team comprises of Maja Kierdorf, Rainer Beck, Matthias Hoeft, Uli Klein, Reinout van Weeren, William Forman, and Christine Jones. First author Maja Kierdorf and Rainer Beck are MPIfR employees.

Original publication:

Relics in galaxy clusters at high radio frequencies, M. Kierdorf, R. Beck, M. Hoeft, U. Klein, R. J. van Weeren, W. R. Forman, and C. Jones, 2017, Astronomy & Astrophysics 600, A18 (March 22, 2017):


Maja Kierdorf,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-180

Dr. Rainer Beck,
Max-Planck-Institut für Radioastronomie, Bonn
Phone: +49 6221 528-323

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399

Weitere Informationen:

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Space observation with radar to secure Germany's space infrastructure
23.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>