Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Getting better all the time: JILA strontium atomic clock sets new records


In another advance at the far frontiers of timekeeping by National Institute of Standards and Technology (NIST) researchers, the latest modification of a record-setting strontium atomic clock has achieved precision and stability levels that now mean the clock would neither gain nor lose one second in some 15 billion years*--roughly the age of the universe.

Precision timekeeping has broad potential impacts on advanced communications, positioning technologies (such as GPS) and many other technologies. Besides keeping future technologies on schedule, the clock has potential applications that go well beyond simply marking time. Examples include a sensitive altimeter based on changes in gravity and experiments that explore quantum correlations between atoms.

JILA's strontium lattice atomic clock now performs better than ever because scientists literally "take the temperature" of the atoms' environment. Two specialized thermometers, calibrated by NIST researchers and visible in the center of the photo, are inserted into the vacuum chamber containing a cloud of ultracold strontium atoms confined by lasers.

Credit: Marti/JILA

As described in Nature Communications,** the experimental strontium lattice clock at JILA, a joint institute of NIST and the University of Colorado Boulder, is now more than three times as precise as it was last year, when it set the previous world record.*** Precision refers to how closely the clock approaches the true resonant frequency at which the strontium atoms oscillate between two electronic energy levels. The clock's stability-- how closely each tick matches every other tick--also has been improved by almost 50 percent, another world record.

The JILA clock is now good enough to measure tiny changes in the passage of time and the force of gravity at slightly different heights. Einstein predicted these effects in his theories of relativity, which mean, among other things, that clocks tick faster at higher elevations. Many scientists have demonstrated this, but with less sensitive techniques.****

"Our performance means that we can measure the gravitational shift when you raise the clock just 2 centimeters on the Earth's surface," JILA/NIST Fellow Jun Ye says. "I think we are getting really close to being useful for relativistic geodesy."

Relativistic geodesy is the idea of using a network of clocks as gravity sensors to make 3D precision measurements of the shape of the Earth. Ye agrees with other experts that, when clocks can detect a gravitational shift at 1 centimeter differences in height--just a tad better than current performance--they could be used to achieve more frequent geodetic updates than are possible with conventional technologies such as tidal gauges and gravimeters.

In the JILA/NIST clock, a few thousand atoms of strontium are held in a 30-by-30 micrometer column of about 400 pancake-shaped regions formed by intense laser light called an optical lattice. JILA and NIST scientists detect strontium's "ticks" (430 trillion per second) by bathing the atoms in very stable red laser light at the exact frequency that prompts the switch between energy levels.

The JILA group made the latest improvements with the help of researchers at NIST's Maryland headquarters and the Joint Quantum Institute (JQI). Those researchers contributed improved measurements and calculations to reduce clock errors related to heat from the surrounding environment, called blackbody radiation. The electric field associated with the blackbody radiation alters the atoms' response to laser light, adding uncertainty to the measurement if not controlled.

To help measure and maintain the atoms' thermal environment, NIST's Wes Tew and Greg Strouse calibrated two platinum resistance thermometers, which were then installed in the clock's vacuum chamber in Colorado. Researchers also built a radiation shield to surround the atom chamber, which allowed clock operation at room temperature rather than much colder, cryogenic temperatures.

"The clock operates at normal room temperature," Ye notes. "This is actually one of the strongest points of our approach, in that we can operate the clock in a simple and normal configuration while keeping the blackbody radiation shift uncertainty at a minimum."

In addition, JQI theorist Marianna Safronova used the quantum theory of atomic structure to calculate the frequency shift due to blackbody radiation, enabling the JILA team to better correct for the error.

Overall, the clock's improved performance tracks NIST scientists' expectations for this area of research, as described in "A New Era in Atomic Clocks" at


The JILA research is supported by NIST, the Defense Advanced Research Projects Agency and the National Science Foundation.

* For the general public, NIST converts an atomic clock's systematic or fractional total uncertainty to an error expressed as 1 second accumulated over a certain minimum length of time. That is calculated by dividing 1 by the clock's systematic uncertainty, and then dividing that result by the number of seconds in a year (31.5 million) to find the approximate minimum number of years it would take to accumulate 1 full second of error. The JILA clock has reached a higher level of precision (smaller uncertainty) than any other clock.

** T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B.J. Bloom, R.L. McNally, W. Zhang, M.D. Barrett, M.S. Safronova, G.F. Strouse, W.L. Tew and J. Ye. 2015. Nature Communications. Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty. April 21.

*** See 2014 NIST Tech Beat article, "JILA Strontium Atomic Clock Sets New Records in Both Precision and Stability," at

**** Another NIST group demonstrated this effect by raising the quantum logic clock, based on a single aluminum ion, about 1 foot. See 2010 NIST news release, "NIST Pair of Aluminum Atomic Clocks Reveal Einstein's Relativity at a Personal Scale," at

Laura Ost | EurekAlert!

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>