Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galactic 'hailstorm' in the early universe

16.01.2015

Two teams of astronomers led by researchers at the University of Cambridge have looked back nearly 13 billion years, when the Universe was less than 10 percent its present age, to determine how quasars - extremely luminous objects powered by supermassive black holes with the mass of a billion suns - regulate the formation of stars and the build-up of the most massive galaxies.

Using a combination of data gathered from powerful radio telescopes and supercomputer simulations, the teams found that a quasar spits out cold gas at speeds up to 2000 kilometres per second, and across distances of nearly 200,000 light years - much farther than has been observed before.


These images are a comparison of outflows from telescope observation and computer simulation.

Credit: Tiago Costa

How this cold gas - the raw material for star formation in galaxies - can be accelerated to such high speeds had remained a mystery. Detailed comparison of new observations and supercomputer simulations has only now allowed researchers to understand how this can happen: the gas is first heated to temperatures of tens of millions of degrees by the energy released by the supermassive black hole powering the quasar. This enormous build-up of pressure accelerates the hot gas and pushes it to the outskirts of the galaxy.

The supercomputer simulations show that on its way out of the parent galaxy, there is just enough time for some of the hot gas to cool to temperatures low enough to be observable with radio telescopes. The results are presented in two separate papers published today (16 January) in the journals Monthly Notices of the Royal Astronomical Society and Astronomy & Astrophysics.

Quasars are amongst the most luminous objects in the Universe, and the most distant quasars are so far away that they allow us to peer back billions of years in time. They are powered by supermassive black holes at the centre of galaxies, surrounded by a rapidly spinning disk-like region of gas. As the black hole pulls in matter from its surroundings, huge amounts of energy are released.

"It is the first time that we have seen outflowing cold gas moving at these large speeds at such large distances from the supermassive black hole," said Claudia Cicone, a PhD student at Cambridge's Cavendish Laboratory and Kavli Institute for Cosmology, and lead author on the first of the two papers. "It is very difficult to have matter with temperatures this low move as fast as we observed."

Cicone's observations allowed the second team of researchers specialising in supercomputer simulations to develop a detailed theoretical model of the outflowing gas around a bright quasar.

"We found that while gas is launched out of the quasar at very high temperatures, there is enough time for some of it to cool through radiative cooling - similar to how the Earth cools down on a cloudless night," said Tiago Costa, a PhD student at the Institute of Astronomy and the Kavli Institute for Cosmology, and lead author on the second paper. "The amazing thing is that in this distant galaxy in the young Universe the conditions are just right for enough of the fast moving hot gas to cool to the low temperatures that Claudia and her team have found."

Working at the IRAM Plateau De Bure interferometer in the French Alps, the researchers gathered data in the millimetre band, which allows observation of the emission from the cold gas which is the primary fuel for star formation and main ingredient of galaxies, but is almost invisible at other wavelengths.

The research was supported by the UK Science and Technology Facilities Council (STFC), the Isaac Newton Trust and the European Research Council (ERC). The computer simulations were run using the Computer Cluster DARWIN, operated by the University of Cambridge High Performance Computing Service, as part of STFCs DiRAC supercomputer facility.

Media Contact

Sarah Collins
sarah.collins@admin.cam.ac.uk
44-012-237-65542

 @Cambridge_Uni

http://www.cam.ac.uk 

Sarah Collins | EurekAlert!

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>