Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fundamental observation of spin-controlled electrical conduction in metals

07.07.2015

Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories

Modern magnetic memories, such as hard drives installed in almost every computer, can store a very large amount of information thanks to very tiny, nanoscale magnetic sensors used for memory readout. The operation of these magnetic sensors, called the spin-valves, is based on the effect of giant magnetoresistance (GMR), for which its inventors Albert Fert and Peter Grünberg were awarded a Nobel Prize in Physics in 2007.


Difference in conduction by electrons with opposite spins in ferromagnetic metals can be precisely resolved using terahertz waves.

© MPI-P

The GMR effect is based on the idea of electrical conduction in ferromagnetic metals, proposed by Sir Nevill F. Mott as early as in 1936. In Mott’s picture, the conduction electrons in ferromagnetic metals experience scattering depending on their microscopic magnetic moment – the spin.

That is, the electrons with one spin orientation scatter less and are therefore more conductive than the electrons with the opposite spin orientation. This spin-asymmetry in electron conduction is greatly amplified when the thin films of ferromagnetic and nonmagnetic metals are combined together to form a spin-valve in which electrical resistivity becomes very sensitive to the magnetic field, leading to a GMR effect.

Even though the Mott spin-dependent conductivity is at the heart of magnetic memories and many other technologies, its direct observation has been a long time challenge. Indeed the fundamental parameters of Mott conduction – spin-dependent electron scattering time and spin-dependent electron density – can be directly and unambiguously determined only if the conductivity of the metal is measured on the same ultrafast timescale at which the electron scattering occurs, that is sub-100 femtosecond (1 fs = 10-15 s, i.e. one millionth of one billionth of a second). For many decades, such an extremely fast timescale of experimental measurement precluded the observation of magnetotransport in metals on the fundamental level.

In a collaborative work carried out by the research groups at the Max Planck Institute for Polymer Research (MPI-P) and the Johannes Gutenberg University (JGU), with the contribution of Sensitec GmbH and the Fritz Haber Institute of the Max Planck Society, the scientists managed to break the speed barrier for fundamental magnetotransport measurements by using a method called ultrafast terahertz spectroscopy (1 THz = 1012 Hz, i.e. one thousand billion oscillations per second).

“By studying the interaction of THz electromagnetic waves - which oscillate about as fast as the electrons in metal scatter their momentum - with a spin-valve, we could directly measure for the first time the fundamental parameters of Mott conduction”, explains Dmitry Turchinovich, project leader at the MPI-P. “In particular, we found that the traditional measurements performed on the slower timescales significantly underestimate the spin-asymmetry in electron scattering which is responsible for the magnetic sensor operation”.

The results of the research team: Zuanming Jin, Alexander Tkach, Frederick Casper, Victor Spetter, Hubert Grimm, Andy Thomas, Tobias Kampfrath, and Mischa Bonn, led by Dmitry Turchinovich (MPI-P) and Mathias Kläui (JGU) have recently been published in Nature Physics.

This work adds a new and powerful tool, ultrafast THz spectroscopy, to the studies in spintronics, opening up a new research field – terahertz spintronics.

Weitere Informationen:

http://mainz-thz-group.weebly.com/- Information about Prof. Turchinovich and his research
http://www.mpip-mainz.mpg.de/home/en - Max Planck Institute for Polymer Research

Natacha Bouvier | Max-Planck-Institut für Polymerforschung

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>