Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From the mouths of ... young fireballs


Unprecedented nova images illuminate astronomers' models for its ejecta

The first images of a nova during its early fireball stage--when it ejects material, and gases expand and cool--show that this activity is more complicated than predicted.

Last year, on Aug. 14, Japanese amateur astronomer Koichi Itagaki discovered a "new" star, promptly named Nova Delphinus 2013.

Credit: Jimmy Westlake, Colorado Mountain College via Wikimedia Commons

That is the conclusion, published in the current issue of Nature, from a research collaboration led by Georgia State University Astronomer Gail Schaefer that includes 37 researchers (many who are National Science Foundation (NSF)-funded) from 17 institutions. The researchers observed the expanding thermonuclear fireball from a nova that erupted last year in the constellation Delphinus.

"This is the first time astronomers have been able to witness an expanding fireball with such great detail, rather than as a tiny point of light way out in the galaxy," Schaefer said. "It was amazing to see the material expanding outward each day after the explosion."

A nova occurs after a thin layer of hydrogen builds up on the surface of a white dwarf--a highly evolved star with the mass of the sun packed into the volume of the Earth. A normal star accompanies the white dwarf in a binary star system, providing that hydrogen as the two stars orbit each other.

The normal star sheds a small amount of its mass through a stream onto the white dwarf's surface that gradually builds up a hydrogen "ocean." When that ocean is perhaps 200 meters (~650 feet) deep, the white dwarf's enormous surface gravity produces a pressure at the bottom of the hydrogen layer sufficient to trigger thermonuclear fusion, essentially a stellar H-bomb. Over ensuing weeks, the nova slowly fades as the fireball expands, cools and dissipates. Surprisingly, this seeming cataclysm on the white dwarf's surface has no real effect on the star or its companion, and the flow of material resumes so that the detonation will likely repeat at a future date.

Because these objects are generally very far from the sun and faint until the explosion occurs, they do not appear on classical star maps. Instead, a "new" star suddenly appears where none was before.

The famous 16th century Danish astronomer Tycho Brahe described this sudden appearance of stars in his 1572 book De Stella Nova, and the Latin nova for "new" became attached to this phenomenon, which also manifests itself through far more energetic processes that are destructive of the exploding star in a supernova.

Nova Delphinus lights up

Last year, on Aug. 14, the Japanese amateur astronomer Koichi Itagaki discovered a "new" star, promptly named Nova Delphinus 2013. Within 15 hours of discovery and within 24 hours of actual explosion, the NSF-funded Center for High Angular Resolution Astronomy (CHARA) and its Georgia State University astronomers pointed array telescopes, located at historic Mount Wilson Observatory in the San Gabriel Mountains of Southern California, toward Nova Del 2013 to image the fireball and measure it. They measured the nova on a total of 27 nights over two months; the first measurement represents the earliest size yet obtained for a nova event.

The CHARA facility uses optical interferometry principles to combine light from six telescopes to create images with very high resolution, equivalent to that of a telescope with a diameter of more than 300 meters. This makes it capable of seeing details far smaller in angular extent than traditional telescopes on the ground or in space. To put it in perspective, it can resolve imagery the size of a U.S nickel on the top of the Eiffel tower in Paris from the distance of Los Angeles, Calif.

"Since novae can dim rapidly after their outburst, having sufficient brightness and resolution at the critical times is very challenging," said collaborator Dipankar Banerjee from the Indian Physical Research Laboratory. "CHARA is one of the few instruments in the world that can do this."

CHARA's measurement of angular expansion rate of the nova, combined with measurements of the expansion velocity from independent spectroscopic observations, allowed researchers to determine distance to the star. Nova Del 2013 was found to be 14,800 light years from the sun. This means that, while we witnessed this explosion here on Earth last August, it actually took place nearly 15,000 years ago.

Knowing the nova's distance along with its angular size allows astronomers to determine the fireball's physical size at different times of observation. During the first observation on Aug. 15, the fireball was roughly the size of Earth's orbit. Two days later, it was already the size of Mars' orbit, and by day 12, the fireball surface would extend out to Jupiter's orbit. When last measured 43 days after detonation, it had expanded nearly 20-fold to nearly the size of Neptune's orbit. But it was the thermonuclear explosion back on the white dwarf's surface that fueled this remarkable expansion rate of more than 600 kilometers-per-second (over 1.3 million miles per hour).

Catch a flying elliptical nova fireball

The University of Michigan Infrared Beam Combiner (MIRC), an instrument that combines all six telescopes of the CHARA Array simultaneously, created the nova fireball's first images and showed that the explosion was not precisely spherical, and that the fireball actually had an ellipticity of 13 percent. This will help astronomers understand how material is ejected from a white dwarf during this kind of explosion.

"One remaining mystery here is how the shape of the explosion changed so much over just a few days," said John Monnier, MIRC principal investigator. "I can't wait for the next big nova to happen soon to see what more we can learn about this dramatic process."

The CHARA observations also showed that fireball outer layers became more diffuse and transparent as it expanded. After about 30 days, researchers saw evidence for a brightening in outer layers, potentially caused by dust grains forming in cooler, clumpy structures that emitted light at infrared wavelengths.

"This result is a dramatic illustration of the powerful new capability provided by optical interferometry," said Jim Neff, NSF astronomy program officer. "And it also highlights the importance of rapid communication and cooperation among astronomers worldwide, both amateur and professional."

It has been almost 350 years since Carthusian monk Pere Dom Anthelme discovered the first true nova in the constellation of Vulpecula in 1670. Since then thousands of novae have been discovered, but it is only in the last decade or so that it has become possible to image the earliest stages of the explosion due to interferometry's high resolution. The new CHARA measurements follow the expansion of Nova Del 2013 from its very early relatively compact stages until the fireball was nearly the size of our solar system. Studying how the structure of the nova changed at the earliest stages brings new insights to theoretical models of novae eruptions.

Media Contacts
Ivy F. Kupec, NSF, (703) 292-8796,

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Ivy F. Kupec | Eurek Alert!
Further information:

Further reports about: CHARA Earth Foundation NSF Nova Telescopes dwarf fireball layers measurement measurements novae white dwarf

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>