Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fresh evidence for how water reached Earth found in asteroid debris

07.05.2015
  • Quantity of water on Earth not unique
  • Water likely reached Earth via comets and asteroids crashing into Earth's surface
  • Evidence found in the atmosphere of white dwarf star
  • Asteroid found to contain 30-35% Earth's water content
  • Research led by the University of Warwick and published by Royal Astronomical Society

Water delivery via asteroids or comets is likely taking place in many other planetary systems, just as it happened on Earth, new research strongly suggests.


Artist's impression of a rocky and water-rich asteroid being torn apart by the strong gravity of the white dwarf star. Similar objects in the Solar System likely delivered the bulk of water on Earth and represent the building blocks of the terrestrial planets.

Image copyright Mark A. Garlick, space-art.co.uk, University of Warwick

Published by the Royal Astronomical Society and led by the University of Warwick, the research finds evidence for numerous planetary bodies, including asteroids and comets, containing large amounts of water.

The research findings add further support to the possibility water can be delivered to Earth-like planets via such bodies to create a suitable environment for the formation of life.

Commenting on the findings lead researcher Dr Roberto Raddi, of the University of Warwick's Astronomy and Astrophysics Group, said:

"Our research has found that, rather than being unique, water-rich asteroids similar to those found in our Solar System appear to be frequent. Accordingly, many of planets may have contained a volume of water, comparable to that contained in the Earth.

"It is believed that the Earth was initially dry, but our research strongly supports the view that the oceans we have today were created as a result of impacts by water-rich comets or asteroids".

In observations obtained at the William Herschel Telescope in the Canary Islands, the University of Warwick astronomers detected a large quantity of hydrogen and oxygen in the atmosphere of a white dwarf (known as SDSS J1242+5226). The quantities found provide the evidence that a water-rich exo-asteroid was disrupted and eventually delivered the water it contained onto the star.

The asteroid, the researchers discovered, was comparable in size to Ceres - at 900km across, the largest asteroid in the Solar System. "The amount of water found SDSS J1242+5226 is equivalent to 30-35% of the oceans on Earth", explained Dr Raddi.

The impact of water-rich asteroids or comets onto a planet or white dwarf results in the mixing of hydrogen and oxygen into the atmosphere. Both elements were detected in large amounts in SDSS J1242+5226.

Research co-author Professor Boris Gänsicke, also of University of Warwick, explained:

"Oxygen, which is a relatively heavy element, will sink deep down over time, and hence a while after the disruption event is over, it will no longer be visible.

"In contrast, hydrogen is the lightest element; it will always remain floating near the surface of the white dwarf where it can easily be detected. There are many white dwarfs that hold large amounts of hydrogen in their atmospheres, and this new study suggests that this is evidence that water-rich asteroids or comets are common around other stars than the Sun".

The research, Likely detection of water-rich asteroid debris in a metal-polluted white dwarf, is published in the Monthly Notices of the Royal Astronomical Society by Oxford University Press.

###

Notes for Editors:

A high res illustration can be found here: http://www2.warwick.ac.uk/newsandevents/pressreleases/water_discovered_in/wateryasteroidscience.jpg

For which the caption is "Artist's impression of a rocky and water-rich asteroid being torn apart by the strong gravity of the white dwarf star. Similar objects in the Solar System likely delivered the bulk of water on Earth and represent the building blocks of the terrestrial planets. Image copyright Mark A. Garlick, space-art.co.uk, University of Warwick".

The research was carried out at the UK William Herschel Telescope in the Canary Islands.

A copy of the paper can be found here after the embargo is up: http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv701

Professor Boris Gänsicke from the University of Warwick is available for interview on +44 (0)2476574741 or email Boris.Gaensicke@warwick.ac.uk

Or for further information please contact:

Peter Dunn, Director of Press and Policy University of Warwick
Tel UK: 024 76523708 office 07767 655860 mobile Tel
Overseas: +44 (0)24 76523708 office +44 (0)7767 655860
Email: p.j.dunn@warwick.ac.uk

Media Contact

Boris Gaensicke
Boris.Gaensicke@warwick.ac.uk
44-024-765-74741

 @warwicknewsroom

http://www.warwick.ac.uk 

Boris Gaensicke | EurekAlert!

Further reports about: Asteroids Astronomical Canary Earth Islands SDSS Telescope Warwick William Herschel Telescope dwarf oceans white dwarf

More articles from Physics and Astronomy:

nachricht Riddle of matter remains unsolved: Proton and antiproton share fundamental properties
19.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>