Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fresh evidence for how water reached Earth found in asteroid debris

07.05.2015
  • Quantity of water on Earth not unique
  • Water likely reached Earth via comets and asteroids crashing into Earth's surface
  • Evidence found in the atmosphere of white dwarf star
  • Asteroid found to contain 30-35% Earth's water content
  • Research led by the University of Warwick and published by Royal Astronomical Society

Water delivery via asteroids or comets is likely taking place in many other planetary systems, just as it happened on Earth, new research strongly suggests.


Artist's impression of a rocky and water-rich asteroid being torn apart by the strong gravity of the white dwarf star. Similar objects in the Solar System likely delivered the bulk of water on Earth and represent the building blocks of the terrestrial planets.

Image copyright Mark A. Garlick, space-art.co.uk, University of Warwick

Published by the Royal Astronomical Society and led by the University of Warwick, the research finds evidence for numerous planetary bodies, including asteroids and comets, containing large amounts of water.

The research findings add further support to the possibility water can be delivered to Earth-like planets via such bodies to create a suitable environment for the formation of life.

Commenting on the findings lead researcher Dr Roberto Raddi, of the University of Warwick's Astronomy and Astrophysics Group, said:

"Our research has found that, rather than being unique, water-rich asteroids similar to those found in our Solar System appear to be frequent. Accordingly, many of planets may have contained a volume of water, comparable to that contained in the Earth.

"It is believed that the Earth was initially dry, but our research strongly supports the view that the oceans we have today were created as a result of impacts by water-rich comets or asteroids".

In observations obtained at the William Herschel Telescope in the Canary Islands, the University of Warwick astronomers detected a large quantity of hydrogen and oxygen in the atmosphere of a white dwarf (known as SDSS J1242+5226). The quantities found provide the evidence that a water-rich exo-asteroid was disrupted and eventually delivered the water it contained onto the star.

The asteroid, the researchers discovered, was comparable in size to Ceres - at 900km across, the largest asteroid in the Solar System. "The amount of water found SDSS J1242+5226 is equivalent to 30-35% of the oceans on Earth", explained Dr Raddi.

The impact of water-rich asteroids or comets onto a planet or white dwarf results in the mixing of hydrogen and oxygen into the atmosphere. Both elements were detected in large amounts in SDSS J1242+5226.

Research co-author Professor Boris Gänsicke, also of University of Warwick, explained:

"Oxygen, which is a relatively heavy element, will sink deep down over time, and hence a while after the disruption event is over, it will no longer be visible.

"In contrast, hydrogen is the lightest element; it will always remain floating near the surface of the white dwarf where it can easily be detected. There are many white dwarfs that hold large amounts of hydrogen in their atmospheres, and this new study suggests that this is evidence that water-rich asteroids or comets are common around other stars than the Sun".

The research, Likely detection of water-rich asteroid debris in a metal-polluted white dwarf, is published in the Monthly Notices of the Royal Astronomical Society by Oxford University Press.

###

Notes for Editors:

A high res illustration can be found here: http://www2.warwick.ac.uk/newsandevents/pressreleases/water_discovered_in/wateryasteroidscience.jpg

For which the caption is "Artist's impression of a rocky and water-rich asteroid being torn apart by the strong gravity of the white dwarf star. Similar objects in the Solar System likely delivered the bulk of water on Earth and represent the building blocks of the terrestrial planets. Image copyright Mark A. Garlick, space-art.co.uk, University of Warwick".

The research was carried out at the UK William Herschel Telescope in the Canary Islands.

A copy of the paper can be found here after the embargo is up: http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv701

Professor Boris Gänsicke from the University of Warwick is available for interview on +44 (0)2476574741 or email Boris.Gaensicke@warwick.ac.uk

Or for further information please contact:

Peter Dunn, Director of Press and Policy University of Warwick
Tel UK: 024 76523708 office 07767 655860 mobile Tel
Overseas: +44 (0)24 76523708 office +44 (0)7767 655860
Email: p.j.dunn@warwick.ac.uk

Media Contact

Boris Gaensicke
Boris.Gaensicke@warwick.ac.uk
44-024-765-74741

 @warwicknewsroom

http://www.warwick.ac.uk 

Boris Gaensicke | EurekAlert!

Further reports about: Asteroids Astronomical Canary Earth Islands SDSS Telescope Warwick William Herschel Telescope dwarf oceans white dwarf

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>