Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fortifying the Brick and Charming the Snake - Cosmic Magnetic Fields in Dark Clouds

16.01.2015

Magnetic fields in massive dark clouds are strong enough to support the regions against collapse due to their own gravity. A study lead by researchers at the Max–Planck–Institut für Radioastronomie in Bonn, Germany, shows for the first time that high magnetization sets the stage for the formation of stars much more massive than the sun. This is demonstrated in observations of polarized dust emission from two of the most massive clouds in our Milky Way, the “Brick” and “Snake”. The results are published in this week’s issue of the “Astrophysical Journal”.

Stars much more massive than the Sun (with 8 solar masses or more) live wild and die young. They spew out powerful stellar winds and sometimes explode violently to end up as supernovae. Even their birth is spectacular: massive stars form out of very dense and massive gaseous cores that are deeply embedded within dark clouds of gas and dust.


Cosmic dark cloud "Snake" in a distance of 8,000 light years.

T. Pillai & J. Kauffmann, based on Spitzer GLIMPSE & MIPSGAL images (NASA / JPL-Caltech / S. Carey [SSC/Caltech]) and SCUPOL data from the JCMT (P. Redman / B. Matthews)


Cosmic dark cloud "Brick" close to the Galactic centre.

T. Pillai & J. Kauffmann, based on Spitzer GLIMPSE & MIPSGAL images (NASA / JPL–Caltech / Univ. of Wisconsin) and Hertz data from the CSO (J. Dotson)

In fact, the high mass of these cores has puzzled researchers for many years: the cores should quickly collapse due to their own gravity and destroy themselves before telescopes on Earth can detect them.

“For the first time we witness how magnetic fields thread a massive cloud and help stabilize the region while it gets ready to form high–mass stars” says Thushara Pillai from the Max–Planck–Institut für Radioastronomie (MPIfR) in Bonn (Germany), the lead author of the study. “The cloud would already be collapsing if there were no magnetic support”, she adds. “In that case the young forming cores would never become massive enough to form stars much larger than the Sun.”

It has long been suspected that magnetic fields help to support clouds against collapse. But magnetic fields are elusive: it is difficult to tease the weak signal from magnetic fields from the noise. Every region has to be observed over several nights to finally achieve a significant detection. The current study therefore only targets two regions.

The “Brick” is an unusually dense cloud that is as opaque as its namesake. It resides just a few dozen light years away from the Galactic Center Black Hole in a distance of about 26,000 light years. The nickname of the “Snake” is inspired by its serpent–like shape.

This cloud is about 12,000 light years away from Earth. The team used archival data from two telescopes on top of Mauna Kea (Hawaii, USA) to conduct this research, the James Clerk Maxwell Telescope and the Caltech Submillimeter Observatory.

The magnetic field geometry can be studied by observing the dust particles aligned with the magnetic field. These grains emit polarized radiation that can be detected with telescopes. The magnetic field lines are constantly disturbed by random gas motions in the clouds. “You can think of a guitar string being plucked”, suggests Paul Goldsmith, a team member from the Jet Propulsion Laboratory at the California Institute of Technology in Pasadena (California, USA).

“On a stringed instrument such as a guitar, the tension in the string tries to hold it straight. In our clouds, the magnetic field tries to do this, and the degree of straightness of the field lines is a measure of the magnetic field strength.” Researchers Chandrasekhar and Fermi already suggested this technique in 1953. But only recently have telescopes become sensitive enough to conduct this experiment throughout the Milky Way.

This study opens a new chapter in research that started in the early 1980’s at the Effelsberg 100m–telescope of the MPIfR. First surveys of dense gas near the center of the Milky Way revealed unusually massive clouds, including the “Brick”.

This discovery inspired several follow–up studies, as co–author Jens Kauffmann from the MPIfR explains. “Two years ago we successfully revealed for the first time the internal structure of the Brick. We were surprised to find very little substructure in this cloud: something seemed to stop the gas from clumping up. Now we know that the strong magnetic field might do this.”

The team has now started a project that will observe many more such clouds. This time the researchers will use MPIfR’s APEX telescope. “APEX is currently the only telescope worldwide that is equipped to make these observations”, concludes Thushara Pillai. “It is an exciting possibility to use this observatory to explore more of our Galactic backyard”.

The research team is comprised of Thushara Pillai, Jens Kauffmann and Karl M. Menten (all MPIfR), moreover Jonathan C. Tan (University of Florida), Paul F. Goldsmith (Jet Propulsion Laboratory, California Institute of Technology), and Sean J. Carey (IPAC, California Institute of Technology).

Original Paper:

Magnetic Fields in High-mass Infrared Dark Clouds, T. Pillai, J. Kauffmann, J.C. Tan, P.F. Goldsmith, S.J. Carey, K.M. Menten, 2015, Astrophysical Journal Vol. 799.
http://iopscience.iop.org/0004-637X/799/1
http://de.arxiv.org/abs/1410.7390 (arXiv.org)

Contact:

Dr. Thushara Pillai,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-153
E-mail: tpillai@mpifr-bonn.mpg.de

Prof. Dr. Karl M. Menten,
Director and Head of Research Department “Millimeter- and Submillimeter Astronomy”
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: 0228-525-279
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Norbert Junkes
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2015/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Further reports about: APEX Cosmic MPIfR Magnetic Max-Planck-Institut Milky Way Radioastronomie Snake clouds magnetic field

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>