Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fortifying the Brick and Charming the Snake - Cosmic Magnetic Fields in Dark Clouds

16.01.2015

Magnetic fields in massive dark clouds are strong enough to support the regions against collapse due to their own gravity. A study lead by researchers at the Max–Planck–Institut für Radioastronomie in Bonn, Germany, shows for the first time that high magnetization sets the stage for the formation of stars much more massive than the sun. This is demonstrated in observations of polarized dust emission from two of the most massive clouds in our Milky Way, the “Brick” and “Snake”. The results are published in this week’s issue of the “Astrophysical Journal”.

Stars much more massive than the Sun (with 8 solar masses or more) live wild and die young. They spew out powerful stellar winds and sometimes explode violently to end up as supernovae. Even their birth is spectacular: massive stars form out of very dense and massive gaseous cores that are deeply embedded within dark clouds of gas and dust.


Cosmic dark cloud "Snake" in a distance of 8,000 light years.

T. Pillai & J. Kauffmann, based on Spitzer GLIMPSE & MIPSGAL images (NASA / JPL-Caltech / S. Carey [SSC/Caltech]) and SCUPOL data from the JCMT (P. Redman / B. Matthews)


Cosmic dark cloud "Brick" close to the Galactic centre.

T. Pillai & J. Kauffmann, based on Spitzer GLIMPSE & MIPSGAL images (NASA / JPL–Caltech / Univ. of Wisconsin) and Hertz data from the CSO (J. Dotson)

In fact, the high mass of these cores has puzzled researchers for many years: the cores should quickly collapse due to their own gravity and destroy themselves before telescopes on Earth can detect them.

“For the first time we witness how magnetic fields thread a massive cloud and help stabilize the region while it gets ready to form high–mass stars” says Thushara Pillai from the Max–Planck–Institut für Radioastronomie (MPIfR) in Bonn (Germany), the lead author of the study. “The cloud would already be collapsing if there were no magnetic support”, she adds. “In that case the young forming cores would never become massive enough to form stars much larger than the Sun.”

It has long been suspected that magnetic fields help to support clouds against collapse. But magnetic fields are elusive: it is difficult to tease the weak signal from magnetic fields from the noise. Every region has to be observed over several nights to finally achieve a significant detection. The current study therefore only targets two regions.

The “Brick” is an unusually dense cloud that is as opaque as its namesake. It resides just a few dozen light years away from the Galactic Center Black Hole in a distance of about 26,000 light years. The nickname of the “Snake” is inspired by its serpent–like shape.

This cloud is about 12,000 light years away from Earth. The team used archival data from two telescopes on top of Mauna Kea (Hawaii, USA) to conduct this research, the James Clerk Maxwell Telescope and the Caltech Submillimeter Observatory.

The magnetic field geometry can be studied by observing the dust particles aligned with the magnetic field. These grains emit polarized radiation that can be detected with telescopes. The magnetic field lines are constantly disturbed by random gas motions in the clouds. “You can think of a guitar string being plucked”, suggests Paul Goldsmith, a team member from the Jet Propulsion Laboratory at the California Institute of Technology in Pasadena (California, USA).

“On a stringed instrument such as a guitar, the tension in the string tries to hold it straight. In our clouds, the magnetic field tries to do this, and the degree of straightness of the field lines is a measure of the magnetic field strength.” Researchers Chandrasekhar and Fermi already suggested this technique in 1953. But only recently have telescopes become sensitive enough to conduct this experiment throughout the Milky Way.

This study opens a new chapter in research that started in the early 1980’s at the Effelsberg 100m–telescope of the MPIfR. First surveys of dense gas near the center of the Milky Way revealed unusually massive clouds, including the “Brick”.

This discovery inspired several follow–up studies, as co–author Jens Kauffmann from the MPIfR explains. “Two years ago we successfully revealed for the first time the internal structure of the Brick. We were surprised to find very little substructure in this cloud: something seemed to stop the gas from clumping up. Now we know that the strong magnetic field might do this.”

The team has now started a project that will observe many more such clouds. This time the researchers will use MPIfR’s APEX telescope. “APEX is currently the only telescope worldwide that is equipped to make these observations”, concludes Thushara Pillai. “It is an exciting possibility to use this observatory to explore more of our Galactic backyard”.

The research team is comprised of Thushara Pillai, Jens Kauffmann and Karl M. Menten (all MPIfR), moreover Jonathan C. Tan (University of Florida), Paul F. Goldsmith (Jet Propulsion Laboratory, California Institute of Technology), and Sean J. Carey (IPAC, California Institute of Technology).

Original Paper:

Magnetic Fields in High-mass Infrared Dark Clouds, T. Pillai, J. Kauffmann, J.C. Tan, P.F. Goldsmith, S.J. Carey, K.M. Menten, 2015, Astrophysical Journal Vol. 799.
http://iopscience.iop.org/0004-637X/799/1
http://de.arxiv.org/abs/1410.7390 (arXiv.org)

Contact:

Dr. Thushara Pillai,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-153
E-mail: tpillai@mpifr-bonn.mpg.de

Prof. Dr. Karl M. Menten,
Director and Head of Research Department “Millimeter- and Submillimeter Astronomy”
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: 0228-525-279
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Norbert Junkes
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2015/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Further reports about: APEX Cosmic MPIfR Magnetic Max-Planck-Institut Milky Way Radioastronomie Snake clouds magnetic field

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>