Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fortifying the Brick and Charming the Snake - Cosmic Magnetic Fields in Dark Clouds

16.01.2015

Magnetic fields in massive dark clouds are strong enough to support the regions against collapse due to their own gravity. A study lead by researchers at the Max–Planck–Institut für Radioastronomie in Bonn, Germany, shows for the first time that high magnetization sets the stage for the formation of stars much more massive than the sun. This is demonstrated in observations of polarized dust emission from two of the most massive clouds in our Milky Way, the “Brick” and “Snake”. The results are published in this week’s issue of the “Astrophysical Journal”.

Stars much more massive than the Sun (with 8 solar masses or more) live wild and die young. They spew out powerful stellar winds and sometimes explode violently to end up as supernovae. Even their birth is spectacular: massive stars form out of very dense and massive gaseous cores that are deeply embedded within dark clouds of gas and dust.


Cosmic dark cloud "Snake" in a distance of 8,000 light years.

T. Pillai & J. Kauffmann, based on Spitzer GLIMPSE & MIPSGAL images (NASA / JPL-Caltech / S. Carey [SSC/Caltech]) and SCUPOL data from the JCMT (P. Redman / B. Matthews)


Cosmic dark cloud "Brick" close to the Galactic centre.

T. Pillai & J. Kauffmann, based on Spitzer GLIMPSE & MIPSGAL images (NASA / JPL–Caltech / Univ. of Wisconsin) and Hertz data from the CSO (J. Dotson)

In fact, the high mass of these cores has puzzled researchers for many years: the cores should quickly collapse due to their own gravity and destroy themselves before telescopes on Earth can detect them.

“For the first time we witness how magnetic fields thread a massive cloud and help stabilize the region while it gets ready to form high–mass stars” says Thushara Pillai from the Max–Planck–Institut für Radioastronomie (MPIfR) in Bonn (Germany), the lead author of the study. “The cloud would already be collapsing if there were no magnetic support”, she adds. “In that case the young forming cores would never become massive enough to form stars much larger than the Sun.”

It has long been suspected that magnetic fields help to support clouds against collapse. But magnetic fields are elusive: it is difficult to tease the weak signal from magnetic fields from the noise. Every region has to be observed over several nights to finally achieve a significant detection. The current study therefore only targets two regions.

The “Brick” is an unusually dense cloud that is as opaque as its namesake. It resides just a few dozen light years away from the Galactic Center Black Hole in a distance of about 26,000 light years. The nickname of the “Snake” is inspired by its serpent–like shape.

This cloud is about 12,000 light years away from Earth. The team used archival data from two telescopes on top of Mauna Kea (Hawaii, USA) to conduct this research, the James Clerk Maxwell Telescope and the Caltech Submillimeter Observatory.

The magnetic field geometry can be studied by observing the dust particles aligned with the magnetic field. These grains emit polarized radiation that can be detected with telescopes. The magnetic field lines are constantly disturbed by random gas motions in the clouds. “You can think of a guitar string being plucked”, suggests Paul Goldsmith, a team member from the Jet Propulsion Laboratory at the California Institute of Technology in Pasadena (California, USA).

“On a stringed instrument such as a guitar, the tension in the string tries to hold it straight. In our clouds, the magnetic field tries to do this, and the degree of straightness of the field lines is a measure of the magnetic field strength.” Researchers Chandrasekhar and Fermi already suggested this technique in 1953. But only recently have telescopes become sensitive enough to conduct this experiment throughout the Milky Way.

This study opens a new chapter in research that started in the early 1980’s at the Effelsberg 100m–telescope of the MPIfR. First surveys of dense gas near the center of the Milky Way revealed unusually massive clouds, including the “Brick”.

This discovery inspired several follow–up studies, as co–author Jens Kauffmann from the MPIfR explains. “Two years ago we successfully revealed for the first time the internal structure of the Brick. We were surprised to find very little substructure in this cloud: something seemed to stop the gas from clumping up. Now we know that the strong magnetic field might do this.”

The team has now started a project that will observe many more such clouds. This time the researchers will use MPIfR’s APEX telescope. “APEX is currently the only telescope worldwide that is equipped to make these observations”, concludes Thushara Pillai. “It is an exciting possibility to use this observatory to explore more of our Galactic backyard”.

The research team is comprised of Thushara Pillai, Jens Kauffmann and Karl M. Menten (all MPIfR), moreover Jonathan C. Tan (University of Florida), Paul F. Goldsmith (Jet Propulsion Laboratory, California Institute of Technology), and Sean J. Carey (IPAC, California Institute of Technology).

Original Paper:

Magnetic Fields in High-mass Infrared Dark Clouds, T. Pillai, J. Kauffmann, J.C. Tan, P.F. Goldsmith, S.J. Carey, K.M. Menten, 2015, Astrophysical Journal Vol. 799.
http://iopscience.iop.org/0004-637X/799/1
http://de.arxiv.org/abs/1410.7390 (arXiv.org)

Contact:

Dr. Thushara Pillai,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-153
E-mail: tpillai@mpifr-bonn.mpg.de

Prof. Dr. Karl M. Menten,
Director and Head of Research Department “Millimeter- and Submillimeter Astronomy”
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: 0228-525-279
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Norbert Junkes
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2015/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Further reports about: APEX Cosmic MPIfR Magnetic Max-Planck-Institut Milky Way Radioastronomie Snake clouds magnetic field

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>