Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focused Laser Power Boosts Ion Acceleration

06.08.2015

An international team of physicists has used carbon nanotubes to enhance the efficiency of laser-driven particle acceleration. This significant advance brings compact sources of ionizing radiation for medical purposes closer to reality.

The interaction of high-intensity laser light with solid targets could someday serve as the basis of table-top sources of high-energy ions for medical applications. An international team led by physicists of the LMU affiliated with the Munich-Centre for Advanced Photonics (MAP), a Cluster of Excellence based in Munich, and in cooperation with scientists from the Max Planck Institute of Quantum Optics, has taken another step towards this goal.


A laser beam shines on an ultrathin diamond-like carbon foil coated on one side with a layer of nanotubes. The impact of the laser beam ejects high-energy ions from the unc

Isabella Cortrie

They have done so by boosting the efficiency of a technique that uses extremely intense pulses of laser light to eject packets of high-energy ions from diamond-like carbon foils. In their experiment, the researchers coated one side of the foil with carbon nanotubes.

Upon laser irradiation, the layer acts like a lens to focus and concentrate the light energy on the foil, which results in the production of much more energetic ion beams. This makes experiments with high-energy carbon ions on cells feasible for the first time, and brings light-driven generation of ionizing radiation closer to practical application.

Light is an enormously powerful and versatile source of energy. When high-intensity pulses of laser light are fired at ultrathin diamond-like carbon (DLC) foils, they punch through the foil, stripping electrons from the atoms. The negatively charged electron cloud then drags a stream of positively carbon ions along, accelerating them to speeds of up to 10% of the speed of light.

The bursts of carbon ions produced by the radiation pressure exerted on the foil by ultrashort laser pulses could be used to treat tumors, provided the ions pack sufficient energy. At present, the only machines capable of producing such high-energy ion beams are large and highly expensive particle accelerators. Laser-based technologies are as yet unable to generate beams of comparable quality. However, light-driven approaches offer a possible route to much more compact and far less costly ion sources for medical applications in the future.

To reach this goal, laser physicists need to increase pulse intensities, and find ways to ensure that much more of the incident light energy is delivered in concentrated form to the carbon foil target. MAP physicists have now taken a significant step toward the latter objective. Each laser pulse fired at the target lasts for 50 femtoseconds (a femtosecond equals a millionth of a billionth of a second), and consists of about 20 oscillations of the optical field.

This means that not all of the electromagnetic energy associated with the optical pulse reaches the target at the same time. It arrives in dispersed form, so that the radiation pressure acting on the target atoms rises gradually to a maximum, then drops off again. Since only the peak energy is sufficiently high to rip ions from the foil, the process is not terribly efficient.

Ultrathin foils of diamond-like carbon were first used in studies of radiation pressure acceleration five years ago. For the latest experiments, technicians at the MAP Service Centre used vapor deposition to coat the front of each foil with carbon nanotubes. The nanotubes come to lie on the surface in a higgledy-piggledy fashion, like blades of grass in a haystack. But the plasma formed when the laser pulse impinges on the nanotube coating effectively acts like a lens.

As a result, the power of the incident pulse is concentrated sufficiently to permit immediate ionization of the underlying carbon foil. In addition, the nanotube coating focuses the light pulse onto a very small area of the target.

These two effects together enhance the energy of the carbon ions ejected from the foil to around 200 MeV (mega electron volts) – significantly higher than was previously attainable. In a collaborative effort involving researchers from Germany, the UK, Spain and China, the experiments were carried out with the ASTRA-Gemini laser at the Rutherford Appleton Laboratory in Didcot (UK), as part of the Laserlab Europe Program.

The higher energies now available make it possible, for the first time, to carry out experiments on cells with beams of carbon ions. However, because the radiation must pass through healthy tissue before it reaches a tumor, energies of at least one GeV (gigaelectronvolt) will be required for clinically relevant applications, about five times higher than that attained in the latest experiments.

But boosting power output to this level is not an impossible dream. On the basis of the expertise available at the Munich-Centre for Advanced Photonics, a new Centre for Advanced Laser Applications (CALA) is now being built on the High-Tech Campus in Garching.

CALA will house a novel ultrashort pulse system, called ATLAS 3000, which is designed to provide laser pulses with powers of up to three petawatt. In combination with the energy enhancement made possible by the nanotube-coated carbon foils, this system promises to bring the era of light-based sources of ionizing radiation a lot closer.

Original Publication
J. H. Bin, W. J. Ma, H. Y. Wang, M. J. V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P. S. Foster, B. Dromey, X. Q. Yan, R. Ramis, J. Meyer-ter-Vehn, M. Zepf, and J. Schreiber
Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas.
Phys. Rev. Lett. 115, 064801 (2015), 3 August 2015
doi: 10.1103/PhysRevLett.115.064801

For further information, please contact:
Prof. Jörg Schreiber
Ludwig-Maximilians-Universität München (LMU)
Fakultät für Physik, Lehrstuhl für Experimentalphysik - Medizinische Physik
Am Coulombwall 1, 85748 Garching, Germany
Tel.: +49 (0) 89 289-54025
Email: Joerg.Schreiber@lmu.de

Karolina Schneider | idw - Informationsdienst Wissenschaft
Further information:
http://www.munich-photonics.de/

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>